RB und PM Hi-Tec Industriekupplungen

Einführung

Mehr als 50 Jahre Erfahrung

Renold Hi-Tec Couplings ist seit über 50 Jahren weltweit führend in der Entwicklung und Fertigung von drehelastischen Kupplungen.

Verpflichtung zur Qualität

Als eines der ersten Unternehmen im Vereinigten Königreich wurde Renold Hi-Tec Couplings nach EN ISO 9001:2008 zertifiziert und manifestiert damit seine Verpflichtung in puncto Qualität.

Herstellung auf Weltklasseniveau

Es werden kontinuierlich Investitionen in die neuesten Bearbeitungs- und Werkzeugtechnologien getätigt. Die Anwendung von Methoden zur schlanken Produktion in einer integrierten Zellen-Fertigung schafft effiziente Arbeitsabläufe.

Technischer Support

Den erfahrenen Renold Hi-Tec Couplings Technikern stehen umfangreiche Einrichtungen zur Durchführung laufender Tests und Entwicklungen der Produkte zur

Verfügung. Dazu gehört zum Beispiel die Möglichkeit zur:

- · Messung der Drehsteifigkeit bis 220 kNm
- · Umfassende axiale und radiale Steifigkeitsmessungen
- · Überprüfung von Fluchtungsfehler (Kupplungen mit Durchmesser bis 2 m)
- · Statische und dynamische Auswuchtung
- · 3D Solidmodell CAD
- Finite-Elemente-Analyse

TSA Service

Unsere Torsionsanalysten bieten unseren Kunden einen kompletten Torsionsschwingungsanalysen-Service, bei dem die Antriebsstränge untersucht und die Systemleistungen protokolliert werden. Dieser Service, zusammen mit der Einrichtung für transiente Analysen, ist für jedermann zugänglich und nicht vom Kauf eines Renold Hi-Tec Produktes abhängig.

Zulassungen von Schiffssachverständigen-Verbänden

Renold Hi-Tec Couplings arbeitet mit allen großen Schiffssachverständigen-Verbänden zusammen, um sicherzustellen, dass die Produkte den hohen Leistungsanforderungen entsprechen.

Inhalt

	Page No
RB-Kupplung	
Merkmale & Vorteile	4
Typische Anwendungen	5
Welle - Welle	6
Auf Schwungrad montiert	8
Technische Daten	12
Designmöglichkeiten	15
PM-Kupplung	
Merkmale & Vorteile	16
Typische Anwendungen	17
Welle - Welle	18
Walzenmotorkupplungen	20
Technische Daten	22
Technische Daten - Standardblöcke	23
Technische Daten - runde Sonderblöcke	25
Designmöglichkeiten	26
Auswahlverfahren	
Betriebsfaktoren - Hauptantrieb	27
Betriebsfaktoren - angetriebene Geräte	28
Auswahlbeispiele	29
Berechnungsservice	29
Transiente Analyse	30
Informationen zum Material - Gummi	31
Dämpfungseigenschaften	32
Renold Hi-Tec Produktübersicht	33
Renold Produktübersicht - Getriebe und Kupplungen	34

RB Elastische Kupplungen

Merkmale

- Ausfallsichere Konstruktion
- Kontrolle der Resonanz-Torsionsschwingung
- Wartungsfrei
- Schutz gegen starke Stoßbelastungen
- Verlagerungsfähigkeit
- Kein Umkehrspiel
- Geringe Kosten

Konstruktionsbeschreibung

- Kugelgraphit nach BS 2789 Grade 420/12
- Separate Gummielemente mit verschiedenen Qualitäts- und Härteoptionen (SM70 Shore-Härte Standard)
- Gummielemente, die vollgekapselt und auf Druck belastet sind

Kosteneffektives Produktsortiment - aus Gusseisen mit Kugelgraphit für Drehmomente bis 41000 Nm.

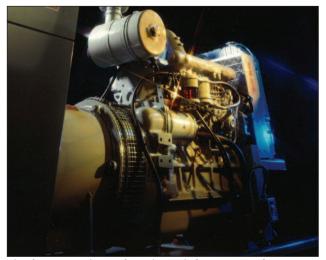
Das Standardangebot besteht aus

- Welle Welle
- Welle Welle mit verlängerter Nabe
- Schwungrad Welle
- Schwungrad Welle mit verlängerter Nabe

Anwendungen

- Generatoranlagen
- Pumpenaggregate
- Kompressoren
- Windkraftturbinen
- Stahlwerke
- Schüttgutumschlag
- Zellstoff- und Papierindustrie
- Allgemeine Industrieanwendungen

Vorteile

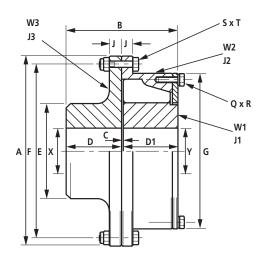

- Sichert den kontinuierlichen Betrieb des Antriebssystems im unwahrscheinlichen Fall, dass das Gummielement beschädigt ist
- Niedrige Schwingungsbelastungen der Antriebssystemkomponenten aufgrund optimaler Steifigkeitseigenschaften
- Niedrige Betriebskosten da weder Schmierung noch Justage notwendig ist
- Verhindert Ausfall des Antriebssystems unter Kurzschlussbedingungen und anderen vorübergehenden Zuständen
- Erlaubt axialen und radialen Versatz zwischen treibender und angetriebener Maschine
- · Eliminiert Drehmomentverstärkungen aufgrund der vorkomprimierten Gummielemente
- Die RB Kupplungen bieten die niedrigsten Lebensdauerkosten

RB Typische Anwendungen

Dieselaggregat. Die kupplung sitzt zwischen Motor und Generator.

Dieselaggregat. Die Kupplung sitzt zwischen Motor und Generator.

Stahlwerke. Kupplungen sitzen an 35 t Brückenkran und an Rollgangantrieben.


Pumpenaggregate. Die Kupplung sitzt zwischen Dieselmotor und Kreiselpumpe.

Stahlwerke. Kupplungen sitzen an den Rollgangantrieben der Walzwerke und Ofenentleerungstische.

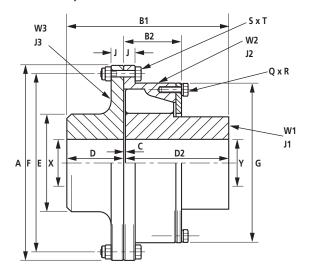
RB Welle - Welle

Starre Hälfte / Flexible Hälfte

Merkmale

- Kann für einen großen Bereich von Wellendurchmessern eingesetzt werden
- Einfaches Trennen des äußeren Elements und des Antriebsflansches
- Kupplung mit reduziertem Axialspiel verfügbar

Vorteile


- Ermöglicht Auswahl der optimalen Kupplung
- Ermöglicht ein Trennen der Antriebs- und angetriebenen Maschine
- Bietet eine axiale Befestigung für Anker mit Axialspiel

KUPPLUNGSGRÖSSE		0.12	0.2	0.24	0.37	0.73	1.15	2.15	3.86	5.5
	Α	200.0	222.2	238.1	260.3	308.0	358.8	466.7	508.0	571.5
	В	104.8	111.2	123.8	136.5	174.6	193.7	233.4	260.4	285.8
	С	3.2	3.2	3.2	3.2	3.2	3.2	4.8	6.4	6.4
	D	50.8	54.0	60.3	66.7	85.7	95.2	114.3	127.0	139.7
	D1	50.8	54.0	60.3	66.7	85.7	95.2	114.3	127.0	139.7
	E	79.4	95.2	101.6	120.6	152.4	184.1	222.2	279.4	330.2
	F	177.8	200.0	212.7	235.0	279.4	323.8	438.15	469.9	542.92
	G	156.5	178	186.5	210	251	295	362	435	501.5
ABMESSUNGEN	J	12.7	14.3	15.9	17.5	19.0	19.0	19.0	22.2	25.4
(mm)	Q	5	6	6	6	6	6	6	7	8
	R	M8	M8	M8	M10	M10	M12	M12	M12	M12
	S	6	6	6	8	8	10	16	12	12
	T	M8	M8	M10	M10	M12	M12	M12	M16	M16
	MAX. X	50	60	65	80	95	115	140	170	210
	MAX. Y	55	70	75	85	95	115	140	170	210
	MIN. X & Y	30	35	40	40	55	55	70	80	90
GUMMI ELEMENTE	PRO AUSSPARUNG	1	1	1	1	1	1	1	1	1
	PRO KUPPLUNG	10	12	12	12	12	12	12	14	16
MAX. GESCHWINDIGKEIT (r	nin ⁻¹) (1)	5250	4725	4410	4035	3410	2925	2250	2070	1820
GEWICHT (3)	W1	2.82	4.04	5.29	7.49	12.82	23.39	35.88	62.81	102.09
(kg)	W2	4.00	5.05	6.38	8.14	13.29	18.41	33.98	43.87	59.00
	W3	4.06	5.82	7.42	10.44	18.03	27.37	47.43	75.39	113.32
TRÄGHEIT (3)	J1	0.0044	0.0084	0.0131	0.0233	0.0563	0.1399	0.3227	0.8489	1.9633
(kg m ⁻²)	J2	0.0232	0.0375	0.0546	0.0887	0.20	0.3674	1.1035	1.9161	3.4391
	J3	0.0153	0.027	0.0396	0.0644	0.1475	0.2862	0.7998	1.512	2.9796
ZULÄSSIGE ACHSVERSCHIEB	UNG (2)									
RADIAL (mm)		0.75	0.75	0.75	0.75	1.0	1.5	1.5	1.5	1.5
AXIAL (mm)		1.5	1.5	1.5	1.5	1.5	1.5	2.0	3.0	3.0
KONISCH (Grad)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

- (1) Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.
- (2) Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten werden.
- (3) Gewichte und Trägheiten basieren auf dem Mindest-Bohrungsdurchmesser.

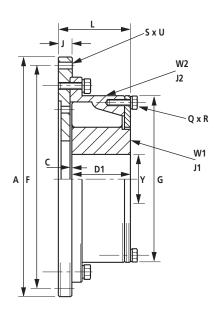
RB Welle - Welle mit verlängerter Nabe

Starre Hälfte / Flexible Hälfte

Merkmale

Innenelement mit langer Nabe

Vorteile


- Ermöglicht den Einsatz von langen Wellen mit kleinen Durchmessern
- Reduziert Belastung auf Passfeder
- Ermöglicht größere Abstände zwischen Wellenenden
- Keine Abstandsringe dank vollem Welleneingriff

KUPPLUNGSGRÖSSE		0.12	0.2	0.24	0.37	0.73	1.15	2.15	3.86	5.5
	Α	200.0	222.2	238.1	260.3	308.0	358.8	466.7	508.0	571.5
	B1	139.0	152.2	173.5	189.9	233.9	268.4	309.1	343.4	386.1
	B2	54.0	57.2	63.5	69.8	88.9	98.4	119.0	133.4	146.0
	С	3.2	3.2	3.2	3.2	3.2	3.2	4.8	6.4	6.4
	D	50.8	54.0	60.3	66.7	85.7	95.2	114.3	127.0	139.7
	D2	85	95	110	120	145	170	190	210	240
	E	79.4	95.2	101.6	120.6	152.4	184.1	222.2	279.4	330.2
	F	177.8	200.0	212.7	235.0	279.4	323.8	438.15	469.9	542.92
	G	156.5	178	186.5	210	251	295	362	435	501.5
ABMESSUNGEN	J	12.7	14.3	15.9	17.5	19.0	19.0	19.0	22.2	25.4
(mm)	Q	5	6	6	6	6	6	6	7	8
	R	M8	M8	M8	M10	M10	M12	M12	M12	M12
	S	6	6	6	8	8	10	16	12	12
	T	M8	M8	M10	M10	M12	M12	M12	M16	M16
	MAX. X	50	60	65	80	95	115	140	170	210
	MAX. Y	55	70	75	85	95	115	140	170	210
	MIN. X & Y	30	35	40	40	55	55	70	80	90
GUMMI ELEMENTE	PRO AUSSPARUNG	1	1	1	1	1	1	1	1	1
	PRO KUPPLUNG	10	12	12	12	12	12	12	14	16
MAX. GESCHWINDIGKEIT (m	in ⁻¹) (1)	5250	4725	4410	4035	3410	2925	2250	2070	1820
GEWICHT (3)	W1	4.21	6.42	8.67	11.85	19.43	35.28	53.81	95.50	162.79
(kg)	W2	4.0	5.05	6.38	8.14	13.29	18.41	33.98	43.87	59.0
	W3	4.06	5.82	7.42	10.44	18.03	27.37	47.43	75.39	113.32
TRÄGHEIT (3)	J1	0.0059	0.0121	0.0193	0.0326	0.0770	0.1896	0.4347	1.1833	2.8953
(kg min ⁻²)	J2	0.0232	0.0375	0.0546	0.0887	0.2000	0.3674	1.1035	1.9161	3.4391
	J3	0.0153	0.0270	0.0396	0.0644	0.1475	0.2862	0.7998	1.5120	2.9796
ZULÄSSIGE ACHSVERSCHI	IEBUNG (2)									
RADIAL (mm)		0.75	0.75	0.75	0.75	1.0	1.5	1.5	1.5	1.5
AXIAL (mm)		1.5	1.5	1.5	1.5	1.5	1.5	2.0	3.0	3.0
KONISCH (Grad)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

- (1) Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.
- (2) Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten werden.
- (3) Gewichte und Trägheiten basieren auf dem Mindest-Bohrungsdurchmesser.

RB Standard SAE Schwungrad - Welle

0,24 bis 1,15

Merkmale

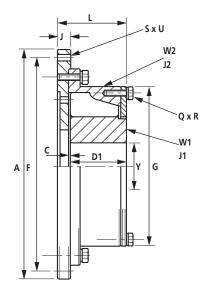
- Eine große Auswahl an Adapterplatten
- Verschiedene Gummimischungen und -härten
- Kurze axiale Länge

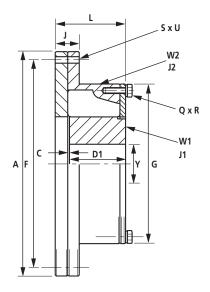
Vorteile

- Kupplung kann an die meisten Motorschwungräder angepasst werden
 - Erlaubt Kontrolle des Torsionsschwingungssystems
- Ermöglicht den Einbau in Kupplungsglocken

KUPPLUNGSGRÖSSE		0.2	4	0.3	7	0.7	3	1	.15
		SAE 10	SAE 11.5	SAE 11.5	SAE 14	SAE 11.5	SAE 14	SAE 14	SAE 18
_	Α	314.3	352.4	352.4	466.7	352.4	466.7	466.7	571.5
	С	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	D1	60.3	60.3	66.7	66.7	85.7	85.7	95.2	95.2
	F	295.27	333.38	333.38	438.15	333.38	438.15	438.15	542.92
_	G	186.5	186.5	210	210	251	251	295	295
ABMESSUNGEN	J	20	20	20	20	20	20	20	28
(mm)	L	79.5	79.5	85.8	85.8	104.9	104.9	114.4	122.4
	Q	6	6	6	6	6	6	6	6
_	R	M8	M8	M10	M10	M10	M10	M12	M12
_	S	8	8	8	8	8	8	8	6
	U	10.5	10.5	10.5	13.5	10.5	13.5	13.5	16.7
	MAX. Y	75	75	85	85	95	95	115	115
	MIN. Y	40	40	40	40	55	55	55	55
GUMMI ELEMENTE	PRO AUSSPARUNG	1	1	1	1	1	1	1	1
	PRO KUPPLUNC	12	12	12	12	12	12	12	12
MAX. GESCHWINDIGKEIT (min-1)	(1)	3710	3305	3305	2500	3310	2500	2500	2040
GEWICHT (3)	W1	5.29	5.29	7.49	7.49	12.82	12.82	23.39	23.39
(kg)	W2	15.71	17.1	19.96	28.76	24.01	35.31	39.03	61.0
TRÄGHEIT (3)	J1	0.0131	0.0131	0.0233	0.0233	0.0563	0.0563	0.1399	0.1399
(kg min-2)	J2	0.1922	0.2546	0.3087	0.7487	0.4000	0.8900	1.0274	2.3974
ZULÄSSIGE ACHSVERSCHIEB	UNG (2)								
RADIAL (mm)		0.75	0.75	0.75	0.75	1.0	1.0	1.5	1.5
AXIAL (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
KONISCH (Grad)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

⁽¹⁾ Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.


⁽²⁾ Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten werden.

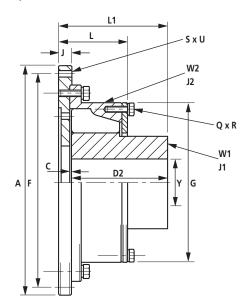

⁽³⁾ Gewichte und Trägheiten basieren auf dem Mindest-Bohrungsdurchmesser.

RB Standard SAE-Schwungrad - Welle

2,15 - 5,5

Halteplatte (2,15 SAE 14 und 5,5 SAE 18)

KUPPLUNGSGRÖSSE			2.15			3.86			5.5	
		SAE 14	SAE 18	SAE 21	SAE 18	SAE 21	SAE 24	SAE 18	SAE 21	SAE 24
	A	466.7	571.5	673.1	571.5	673.1	733.4	571.5	673.1	733.4
	С	4.8	4.8	4.8	6.4	6.4	6.4	6.4	6.4	6.4
	D1	114.3	114.3	114.3	127.0	127.0	127.0	139.7	139.7	139.7
	F	438.15	542.92	641.35	542.92	641.35	692.15	542.92	641.35	692.15
	G	362.0	362.0	362.0	435.0	435.0	435.0	501.5	501.5	501.5
ABMESSUNGEN	J	35.0	28.0	28.0	28.0	31.0	31.0	41.4	28.0	31.0
(mm)	L	135.05	143.0	143.0	157.35	160.35	160.35	162.05	170.0	173.05
	Q	6	6	6	7	7	7	8	8	8
	R	M12								
	S	8	6	12	6	12	12	6	12	12
	U	13.2	16.7	16.7	16.7	16.7	22	16.7	16.7	22
	MAX. Y	140	140	140	170	170	170	210	210	210
	MIN. Y	70	70	70	80	80	80	90	90	90
GUMMI ELEMENTE	PRO AUSSPARUNG	1	1	1	1	1	1	1	1	1
	PRO KUPPLUNG	12	12	12	14	14	14	16	16	16
MAX. GESCHWINDIGKEIT	(min ⁻¹) (1)	2500	2040	1800	2040	1800	1590	2040	1800	1590
GEWICHT (3)	W1	35.88	35.88	35.88	62.81	62.81	62.81	102.09	102.09	102.09
(kg)	W2	50.42	79.17	92.19	86.46	110.35	120.33	79.14	117.21	135.46
TRÄGHEIT (3)	J1	0.3227	0.3227	0.3227	0.8489	0.8489	0.8489	1.9633	1.9633	1.9633
(kg min ⁻²)	J2	1.6535	3.2935	4.9935	3.9461	6.4661	8.1461	4.5684	7.3291	9.6691
ZULÄSSIGE ACHSVERSCHI	EBUNG (2)									
RADIAL (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
AXIAL (mm)		2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0
KONISCH (Grad)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5


⁽¹⁾ Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.

⁽²⁾ Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten werden.

⁽³⁾ Gewichte und Trägheiten basieren auf dem Mindest-Bohrungsdurchmesser.

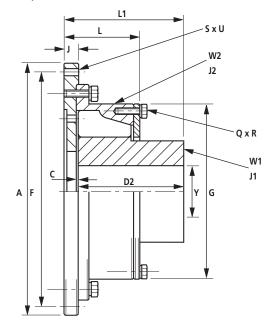
RB Standard SAE Schwungrad - Welle mit verbessertem Welleneingriff

0,24 - 1,15

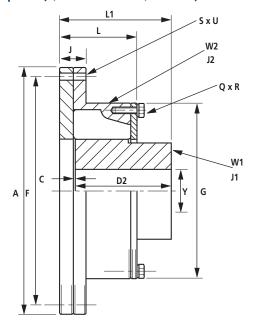
Merkmale

Innenelemente mit langer Nabe

Vorteile


- Ermöglicht den Einsatz von langen Wellen mit kleinen Durchmessern
- Reduziert Belastung auf Passfeder
- Erlaubt einen größeren Abstand zwischen Wellenende und Schwungrad
- Keine Abstandsringe dank vollem Welleneingriff

KUPPLUNGSGRÖSSE		0.24	0.37	0.73	1.15
		SAE 10 SAE 11.5	SAE 11.5 SAE 14	SAE 11.5 SAE 14	SAE 14 SAE 18
_	Α	314.3 352.4 352.4	466.7 352.4 466.7	466.7 571.5	
_	С	3.2 3.2 3.2	3.2 3.2 3.2	3.2 3.2	
_	D2	110 110 120	120 145 145	170 170	
	F	295.27333.38333.38	438.15333.38438.15	438.15542.92	
	G	186.5 186.5 210	210 251 251	295 295	
	J	20 20 20	20 20 20	20 28	
ABMESSUNGEN	L	79.5 79.5 85.8	85.8 104.9 104.9	114.4 122.4	
(mm)	L1	129.2 129.2 139.1	139.1 164.2 164.2	189.2 197.2	
	Q	6 6 6	6 6 6	6 6	
	R	M8 M8 M10	M10 M10 M10	M12 M12	
	S	8 8 8	8 8 8	8 6	
	U	10.5 10.5 10.5	13.5 10.5 13.5	13.5 16.7	
	MAX. Y	75 75 85	85 95 95	115 115	
	MIN. Y	40 40 40	40 55 55	55 55	
GUMMIELEMENTE	PRO AUSSPARUNG	1 1 1	1 1 1	1 1	
	PRO KUPPLUNG	12 12 12	12 12 12	12 12	
MAX. GESCHWINDIGKEIT (mi	in ⁻¹) (1)	3710 3305 3305	2500 3305 2500	2500 2040	
GEWICHT (3)	W1	8.67 8.67 11.85	11.85 19.43 19.43	35.28 35.28	
(kg)	W2	15.71 17.10 19.96	28.76 24.01 35.31	39.03 61.00	
TRÄGHEIT (3)	J1	0.01930.01930.0326	0.03260.07700.0770	0.18960.1896	
(kg min ⁻²)	J2	0.19220.25460.3087	0.74870.40000.8900	1.02742.3974	
ZULÄSSIGE ACHSVERSCHI	EBUNG (2)				
RADIAL (mm)		0.75 0.75 0.75	0.75 1.0 1.0	1.5 1.5	
AXIAL (mm)		1.5 1.5 1.5	1.5 1.5 1.5	1.5 1.5	
KONISCH (Grad)		0.5 0.5 0.5	0.5 0.5 0.5	0.5 0.5	


- (1) Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.
- (2) Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten
- (3) Gewichte und Trägheiten basieren auf dem Mindest-Bohrungsdurchmesser.

RB Standard SAE Schwungrad - Welle mit verbessertem Welleneingriff

2,15 - 5,5

Halteplatte (2,15 SAE 14 und 5,5 SAE 18)

KUPPLUNGSGRÖSSE			2.15			3.86			5.5	
		SAE 14	SAE 18	SAE 21	SAE 18	SAE 21	SAE 24	SAE 18	SAE 21	SAE 24
	Α	466.7	571.5	673.1	571.5	673.1	733.4	571.5	673.1	733.4
	С	4.8	4.8	4.8	6.4	6.4	6.4	6.4	6.4	6.4
	D2	190	190	190	210	210	210	240	240	240
	F	438.15	542.92	641.35	542.92	641.35	692.15	542.92	641.35	692.15
	G	362.0	362.0	362.0	435.0	435.0	435.0	501.5	501.5	501.5
	J	35.0	28.0	28.0	28.0	31.0	31.0	41.4	28.0	31.0
ABMESSUNGEN	L	135.0	143.0	143.0	157.4	160.4	160.4	162.05	170.0	173.0
(mm)	L1	210.7	219.7	219.7	240.4	243.4	243.4	262.4	271.3	273.3
	Q	6	6	6	7	7	7	8	8	8
	R	M12								
	S	8	6	12	6	12	12	6	12	12
	U	13.5	16.7	16.7	16.7	16.7	22	16.7	16.7	22
	MAX. Y	140	140	140	170	170	170	210	210	210
	MIN. Y	70	70	70	80	80	80	90	90	90
GUMMI ELEMENTE	PRO AUSSPARUNG	1	1	1	1	1	1	1	1	1
	PRO KUPPLUNG	12	12	12	14	14	14	16	16	16
MAX. GESCHWINDIGKEIT (min-1	(1)	2500	2040	1800	2040	1800	1590	2040	1800	1590
GEWICHT (3)	W1	53.81	53.81	53.81	95.50	95.50	95.50	162.79	162.79	162.79
(kg)	W2	50.42	79.17	92.19	86.46	110.35	120.33	79.14	117.21	135.46
TRÄGHEIT (3)	J1	0.4347	0.4347	0.4347	1.1833	1.1833	1.1833	2.8953	2.8953	2.8953
(kg min ⁻²)	J2	1.6535	3.2935	4.9935	3.9461	6.4661	8.1461	4.5684	7.3291	9.6691
ZULÄSSIGE ACHSVERSCHIEBUNG (2)										
RADIAL (mm)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
AXIAL (mm)		2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0
KONISCH (Grad)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

⁽¹⁾ Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.

⁽²⁾ Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten werden.

⁽³⁾ Gewichte und Trägheiten basieren auf dem Mindest-Bohrungsdurchmesser.

RB Technische Daten

Drehmomentkapazität - Dieselmotorantriebe 1.1

Für Dieselantriebe wird die RB-Kupplung anhand des "Nenndrehmoments TKN" ohne Betriebsfaktoren ausgewählt.

Die volle Drehmomentkapazität der Kupplung für kurzzeitige Schwingungen, während des Durchlaufs kritischer Punkte beim Anfahren, ist als das maximale Drehmoment angegeben.

 $(TKMAX = 3 \times TKN).$

Die Kupplung verfügt über eine zusätzliche Drehmomentkapazität für Kurzschlüsse und Stoßmomente von 3 x TKMAX.

Das angegebene "Wechseldrehmoment TKW" bezieht sich auf die Amplitude der zulässigen Drehmomentschwankung. Die Frequenz der in den Technischen Daten angegebenen Wechseldrehmomente beträgt 10 Hz. Das zulässige Wechseldrehmoment, bei einer niedrigeren bzw. höheren Frequenz, ist fe = TKW

Die für die Akzeptanz der Kupplung unter Wechseldrehmoment verwendete Maßeinheit wird als "Zulässige Verlustwärme bei einer Umgebungstemperatur von 30°C" angegeben.

1.2 **Industrieantriebe**

Informationen zu industriellen Elektromotor-Anwendungen finden Sie unter "Auswahlverfahren". Die Auswahl sollte auf TKMAX mit den entsprechenden Betriebsfaktoren basieren.

Die im "Auswahlverfahren" eingesetzten Betriebsfaktoren basieren auf 50 Jahre Erfahrung mit Antrieben und deren Impulsfrequenz/Amplitude. Das angegebene TKmax darf, ohne Bezugnahme auf Renold Hi-Tec Couplings, nicht absichtlich überschritten werden. Bei der Konstruktion von Kupplungen mit Bremsen muss darauf geachtet werden, dass die Kupplungsdrehmomente nicht durch scharfe Abbremsungen erhöht werden.

2.0 Steifigkeitseigenschaften

Die Renold Hi-Tec Kupplung ist unter allen Drehmomentbedingungen elastisch. Bei der RB-Baureihe handelt es sich um eine nicht geklebte Kupplung, die nach dem "Gummi-unter-Druck"-Prinzip arbeitet.

Axiale Steifigkeit 2.1

Bei Axialverschiebungen verfügt die Kupplung über einen axialen Widerstand, der aufgrund der Einwirkung des Wechseldrehmoments allmählich nachlässt. Mit ausreichend axialer Kraft, wie in den technischen Daten angeführt, rutscht die Kupplung unverzüglich in ihre neue Position.

2.2 **Radiale Steifigkeit**

Die radiale Steifigkeit der Kupplung ist drehmomentabhängig und unter "Technische Daten" aufgeführt.

2.3 Drehsteifigkeit

Die Drehsteifigkeit der Kupplung ist vom aufgebrachten Drehmoment (siehe Technische Daten) und der Temperatur abhängig.

2.4 Prognose der Torsionsschwingungs-Eigenschaften des Systems

Eine angemessene Prognose der Torsionsschwingungs-Eigenschaften des Systems wird mit folgender Methode erreicht:

- 2.4.1 Verwenden Sie die in den Technischen Daten angeführte Drehsteifigkeit. Sie basiert auf Werten, die bei einer Umgebungstemperatur von 30°C gemessen wurden (Crdyn).
- 2.4.2 Wiederholen Sie die Berechnung von 2.4.1 unter Verwendung des max. Temperaturkorrekturfaktors St100 und des dynamischen Verstärker-Korrekturfaktors M₁₀₀ des Materials (Gummi). Die Tabellenwerte auf Seite 13 werden zur Anpassung der Drehsteifigkeit und des dynamischen Verstärkers verwendet d.h. $C_{T100} = C_{Tdyn} \times S_{t100}$
- Überprüfen Sie die Berechnungen von 2.4.1 und 2.4.2. Die 2.4.3 Kupplung wird für die Anwendung, in Bezug auf die Torsionsschwingungs-Eigenschaften, als geeignet angesehen, sofern der Geschwindigkeitsbereich frei von kritischen Werten ist, die den zulässigen, im Katalog veröffentlichten Wärmeverlustwert, nicht überschreiten. Falls es im Geschwindigkeitsbereich einen kritischen Wert gibt, dann muss die Ist-Temperatur der Kupplung bei dieser Geschwindigkeit berechnet werden.

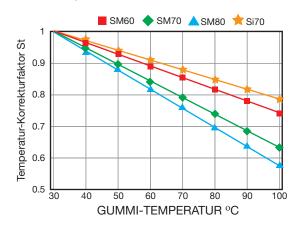
RB Technische Daten

Gummiqualität	Temp _{max} °C	S _t
Si70	200	St ₂₀₀ = 0.48
SM 60	100	$St_{100} = 0.75$
SM 70	100	$St_{100} = 0.63$
SM 80	100	St ₁₀₀ = 0.58
SA	Λ70 gilt als "Standar	d"

Gummiqualität	Dynamischer Verstärker bei 30°C (M ₃₀)	Dynamischer Verstärker bei 100°C (M ₁₀₀)								
SM 60	8	10.7								
SM 70	6	9.5								
SM 80	4	6.9								
Si70	7.5	M ₂₀₀ =15.63								
SM70 gilt als "Standard"										

2.5 Vorhersage der Ist-Kupplungstemperatur und Drehsteifigkeit

- 2.5.1 Verwenden Sie die im Katalog angegebene Drehsteifigkeit; sie basiert auf Daten, die bei einer Temperatur von 30°C gemessen wurden und dem dynamischen Verstärker bei 30°C. (M₃₀)
- 2.5.2 Vergleichen Sie den Synthesewert der errechneten Wärmelast in der Kupplung (PK) bei gewünschter Geschwindigkeit, mit dem "Zulässigen Wärmeverlustwert" (Pkw).


Der Temperaturanstieg der Kupplung
$$^{\circ}$$
C = Temp_{Kupp} = $\left(\frac{P_{K}}{P_{KW}}\right)$ x 70

Die Kupplungstemperatur = ϑ

 ϑ = Temp_{Kupp}+ Umgebungstemp.

- 2.5.3 Berechnen Sie den Temperatur-Korrekturfaktor, St, aus 2.6 (bei Kupplungstemperatur > 100°C, S_{t100} verwenden). Berechnen Sie den dynamischen Verstärker gemäß 2.7. Wiederholen Sie die Berechnung mit den neuen Werten der Kupplungssteifigkeit und des dynamischen Verstärkers.
- Berechnen Sie die Kupplungstemperatur gemäß 2.5. 2.5.4 Wiederholen Sie die Berechnung, bis die Kupplungstemperatur mit den, in der Berechnung eingesetzten, Korrekturfaktoren für die Drehsteifigkeit und den dynamischen Verstärker, übereinstimmt.

2.6 **Temperatur-Korrekturfaktor**

2.7 Korrekturfaktor des dynamischen Verstärkers

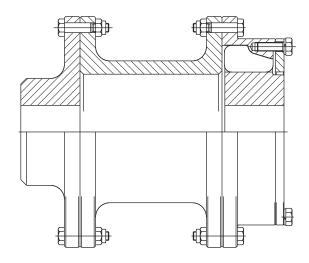
Der dynamische Verstärker des Gummis unterliegt, auf die gleiche Weise wie die Drehsteifigkeit, Temperaturschwankungen.

$$M_T = \frac{M_{30}}{S_t} \qquad \qquad \Psi_T = \Psi_{30} \times S_t$$

Gummiqualität	Dynamischer Verstärker (M ₃₀)	Relative Dämpfung Ѱ30							
SM 60	8	0.78							
SM 70	6	1.05							
SM 80	4	1.57							
Si70	7.5	0.83							
SM70 gilt als "Standard"									

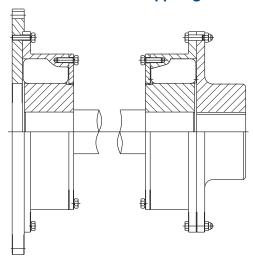
RB Technische Daten

KUPPLUNGSGRÖSSE		0.12	0.2	0.24	0.37	0.73	1.15	2.15	3.86	5.5
NENNDREHMOMENT TKN (kNm) MAXIMALES DREHMOMENT TKmax(kNn WECHSELDREHMOMENT TKW (kNr	,	0.314 0.925 0.122	0.483 1.425 0.188	0.57 1.72 0.222	0.879 2.635 0.342	1.73 5.35 0.672	2.731 8.1 1.062	5.115 15.303 1.989	9.159 27.4 3.561	13.05 41.0 5.075
ZULÄSSIGE VERLUSTWÄRME BEI UMGEBUNGSTEMP. 30°C Pkw (W) Pkw	Si70 SM60 SM70 SM80	252 90 98 100	315 112 123 138	346 125 138 154	392 140 155 173	513 185 204 228	575 204 224 250	710 246 270 302	926 336 369 410	1144 426 465 520
DYNAMISCHE VERDREHSTEIFIGKEIT										
C _{Tdyn} (MNm/rad)										
Bei 0,25 ТкN	Si70 SM60 SM70 SM80	0.004 0.007 0.011 0.016	0.006 0.009 0.014 0.021	0.006 0.010 0.017 0.025	0.010 0.016 0.026 0.039	0.021 0.032 0.052 0.079	0.031 0.049 0.079 0.119	0.060 0.093 0.150 0.225	0.091 0.142 0.230 0.346	0.119 0.186 0.300 0.453
Bei 0,5 ТкN	Si70 SM60 SM70 SM80	0.013 0.016 0.022 0.026	0.017 0.021 0.028 0.033	0.020 0.025 0.034 0.040	0.030 0.038 0.052 0.062	0.062 0.078 0.105 0.125	0.093 0.118 0.159 0.189	0.176 0.223 0.300 0.358	0.271 0.343 0.460 0.549	0.355 0.449 0.602 0.719
Bei 0,75 ТкN	Si70 SM60 SM70 SM80	0.030 0.035 0.043 0.049	0.038 0.045 0.055 0.063	0.046 0.054 0.066 0.076	0.070 0.082 0.101 0.117	0.142 0.167 0.205 0.238	0.215 0.253 0.310 0.360	0.407 0.479 0.586 0.680	0.625 0.735 0.900 1.043	0.818 0.962 1.178 1.366
Веі 1,0Тк	Si70 SM60 SM70 SM80	0.050 0.057 0.066 0.078	0.064 0.073 0.085 0.100	0.077 0.088 0.103 0.121	0.118 0.134 0.157 0.185	0.240 0.273 0.319 0.377	0.363 0.413 0.483 0.570	0.686 0.780 0.912 1.077	1.053 1.197 1.400 1.653	1.379 1.567 1.833 2.164
RADIALE STEIFIGKEIT KEINE LAST (N/mm)	Si70 SM60 SM70 SM80	1153 1020 1255 1728	1424 1260 1550 2135	1622 1435 1765 2430	1801 1594 1962 2700	2391 2116 2586 3654	2610 2310 2845 3915	3243 2870 3530 4860	4226 3740 4600 6330	5343 4728 5810 8008
RADIALE STEIFIGKEIT Bei Tkn (N/mm)	Si70 SM60 SM70 SM80	2096 2046 2134 2310	2594 2536 2638 2855	2948 2880 3000 3250	3335 3207 3435 3610	4335 4250 4396 4885	4754 4650 4835 5235	5904 5780 6000 6500	7690 7520 7820 8465	9726 9510 9890 10700
AXIALE STEIFIGKEIT KEINE LAST (N/mm)	Si70 SM60 SM70 SM80	788 1030 1100 2940	962 1250 1350 3690	1077 1400 1510 4060	1225 1600 1710 4620	1589 2095 2200 6060	1780 2310 2500 6700	2202 2850 3100 8220	2886 3700 4100 10760	3663 4700 5200 13580
MAX. AXIALKRAFT E (1) Bei Tkn (N)	Si70 SM60 SM70 SM80	540 1080 1150 1300	675 1350 1440 1600	750 1500 1600 1760	850 1700 1800 2000	1100 2200 2360 2600	1230 2460 2600 2900	1500 3000 3200 3500	1950 3900 4100 4600	2500 5000 5300 5800

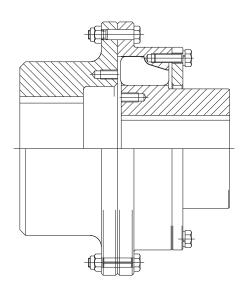

NB. SM70 wird als Standard Gummiqualität geliefert. Ebenfalls verfügbar sind SM60 und SM80, die sich unter Umständen als bessere Lösung eines anwendungsspezifischen Problems in Bezug auf die Dynamik erweisen. Es muss berücksichtigt werden, dass bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit, die Kupplung dynamisch auszuwuchten ist.

⁽¹⁾ Die Renold Hi-Tec Kupplung "rutscht" axial, sobald die max. Axialkraft erreicht ist.

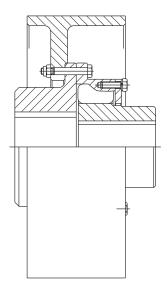
RB Designmöglichkeiten


Die RB-Kupplung kann Kundenwünschen angepasst werden. Details hierzu finden Sie in den unten aufgeführten Designmöglichkeiten. Eine umfassendere Liste erhalten Sie auf Anfrage von Renold Hi-Tec.

Kupplung mit Distanzstück


Kupplung mit Distanzstück. Wird verwendet, um den Abstand zwischen Wellenenden zu erweitern und um einen einfachen Zugriff auf die angetriebene und die Antriebsmaschine zu ermöglichen.

Gelenkwellenkupplung


Gelenkwellenkupplung. Wird verwendet, um den Abstand zwischen Wellenenden zu erweitern und bietet eine höhere Versatzfähigkeit.

Kupplung mit Innenelement mit langer Nabe

Kupplung mit Innenelement mit langer Nabe und einem großen Antriebsflansch zum Einsatz in vertikalen Anwendungen.

Kupplung mit Bremstrommel

Kupplung mit Bremstrommel für den Einsatz an Kränen, Gebläse und Förderantrieben (Kupplung mit Bremsscheibe sind verfügbar).

PM Merkmale und Vorteile

Merkmale

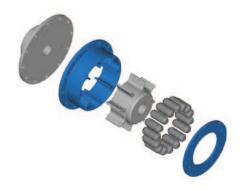
- Schutz gegen starke Stoßbelastungen
- Ausfallsichere Konstruktion
- Wartungsfrei
- Schwingungsregelung
- Kein Umkehrspiel
- Verlagerungsfähigkeit
- Geringe Kosten

Konstruktionsbeschreibung

- PM Kupplungen bis PM18 werden aus hochfestem Gusseisen mit Kugelgraphit gemäß BS EN 1563 hergestellt; Kupplungen ab PM27 aus Stahlguss gemäß BS 3100 A4
- Separate Gummielemente mit verschiedenen Qualitäts- und Härteoptionen; Styrol-Butadien mit einer Shore-Härte von 60 (SM60) ist Standard
- Gummielemente auf Druck belastet
- Gummielemente vollgekapselt

Hochleistungskupplung aus Stahl für Drehmomente bis 6000kNm.

Das Standardangebot besteht aus:

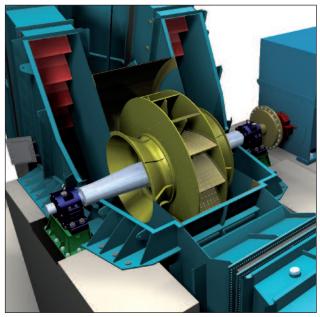

- Welle Welle
- Flansch Welle
- Walzenmotorkupplung
- Bremstrommelkupplung

Anwendungen

- Stahlwerke
- Bergbau und Erzaufbereitung
- Pumpen
- Gebläse
- Kompressoren
- Krane und Hebezeuge
- Zellstoff- und Papierindustrie
- Allgemeine schwere Industrieanwendung

Vorteile

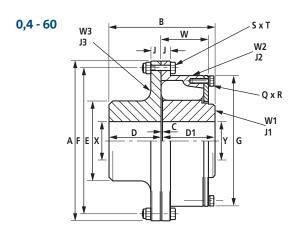
- Bietet Schutz und verhindert Ausfälle des Antriebssystems bei hohen, kurzzeitigen Drehmomenten
- Sichert den kontinuierlichen Betrieb des Antriebssystems im unwahrscheinlichen Fall von Materialbeschädigung bzw. -versagen (Gummi)
- Niedrige Betriebskosten da weder Schmierung noch Justage notwendig ist.
- Erreicht niedrige Schwingungsbelastungen der Antriebssystemkomponenten, dank optimaler Steifheit.
- Eliminiert Drehmomentverstärkungen mittels vorkomprimierter Gummielemente
- Erlaubt axialen und radialen Versatz zwischen treibender und angetriebener Maschine
- Die PM-Kupplungen bieten die niedrigsten Lebensdauerkosten

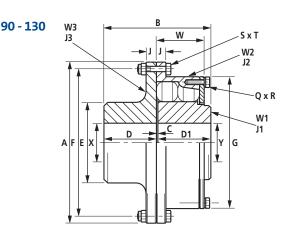

PM Typische Anwendungen

Pfannenkran. Kupplungen werden an Ein- und Ausgabe des Haupthubs und des Längshubs angebracht.

Dampfturbinen-Generatoranlage. Die Kupplung sitzt zwischen Getriebe und Generator.

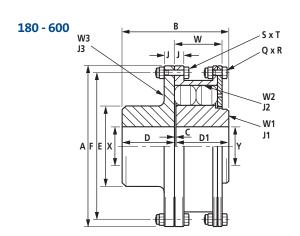
Gebläseantrieb. Die Kupplung sitzt zwischen dem Elektromotor mit variabler Frequenz und dem Gebläse.

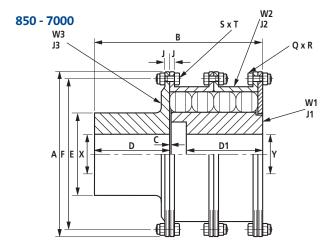



Förderanlage. Die Kupplungen befinden sich an Ein- und Ausgang der Förderanlagenantriebe.

Eiffelturm Hauptaufzug. Die Kupplung mit Scheibenbremse sitzt zwischen Elektromotor und dem Getriebe, das den Aufzug hebt, senkt und bremst.

PM Welle - Welle PM 0,4 bis PM 130

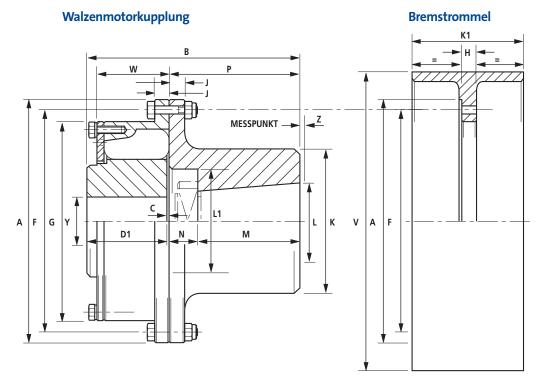




KUPPLUNGSGRÖSSE		0.4	0.7	1.3	3	6	8	12	18	27	40	60	90	130
	Α	161.9	187.3	215.9	260.3	260	302	338	392	440	490	568	638	728
	В	103	110	130	143	175	193	221.5	254	290.5	329	377.5	432.5	487
	С	1	2	2	3	3	3	3.5	4	4.5	5	5.5	6.5	7
	D	51	54	64	70	86	95	109	125	143	162	186	213	240
	D1	51	54	64	70	86	95	109	125	143	162	186	213	240
	E	76	92	108	122	135	148	168	195	220	252	288	330	373
	F	146	171.4	196.8	235	240	276	312	360	407	458	528	598	680
	G	133	157	181	214.3	222	245	280	320	367	418	479	548	620
ABMESSUNGEN	J	9.5	11	12	14.5	11	13.5	14	16	18.5	21	24	26.5	31
(mm)	Q	5	5	6	6	8	8	8	8	8	8	8	8	8
	R	M8	M8	M8	M8	M8	M10	M12	M16	M16	M16	M20	M20	M24
	S	8	8	8	8	12	12	12	12	12	16	12	16	16
	T	M8	M8	M8	M8	M8	M12	M12	M16	M16	M16	M20	M20	M24
	W	36	39	46	60	81	89	102	118	134	152.7	175	200	226
	MAX. X & Y (4)	41	51	64	73	85	95	109	125	143	162	186	213	240
	MIN. X (5)	27	27	35	37	50	62	68	80	90	105	120	140	160
	MIN. Y	27	27	37	40	50	55	65	70	85	105	110	140	160
GUMMIELEMENTE	pro Aussparung	1	1	1	1	1	1	1	1	1	1	1	2	2
	pro Kupplung	10	10	12	12	16	16	16	16	16	16	16	32	32
MAX. GESCHWINDIG	KEIT (min ⁻¹) (1)	7200	6300	5400	4500	4480	3860	3450	2975	2650	2380	2050	1830	1600
	W1	1.9	2.8	4.5	6.9	8.9	11.62	17.74	27.0	40.18	59.5	89.45	132.0	191.11
GEWICHT (3)	W2	2.0	2.9	4.6	6.0	6.55	10.92	15.86	24.59	35.34	50.47	77.80	111.96	165.24
(kg)	W3	2.8	4.3	6.6	10.0	10.84	15.14	21.24	33.03	47.80	69.32	104.63	151.78	222.39
	GESAMT	6.7	10.0	15.7	22.9	26.3	37.7	54.8	84.6	123.3	179.3	271.9	395.7	578.7
TRÄGHEIT (3)	J1	0.002	0.004	0.008	0.018	0.026	0.050	0.101	0.203	0.392	0.756	1.491	2.872	5.330
(kg m ⁻²)	J2	0.006	0.014	0.019	0.049	0.072	0.149	0.273	0.560	1.041	1.898	3.867	7.188	13.680
	J3	0.005	0.013	0.025	0.05	0.058	0.116	0.194	0.406	0.748	1.345	2.719	4.955	9.565
ZULÄSSIGE ACHSVERS	SCHIEBUNG (2)													
RADIAL (mm)		0.8	0.8	0.8	1.2	1.5	1.6	1.6	1.6	1.9	2.1	2.4	2.8	3.3
AXIAL (mm)		0.8	1.2	1.2	1.2	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3.25	3.5
KONISCH (Grad)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

- (1) Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.
- (2) Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten
- (3) Die Gewichte und Trägheiten werden über den mittleren Bohrungsdurchmesser (Kupplungen bis einschließlich PM600) bzw. dem max. Bohrungsdurchmesser (PM900 und größer) berechnet.
- (4) Übergroße Wellen können mit kundenspezifischen Antriebsflanschen mit großen Naben verwendet werden.
- (5) PM0,4 PM3 Antriebsflansche sind auf Anfrage mit Vollbohrung lieferbar.

PM Welle - Welle PM180 bis PM7000



KUPPLUNGSGRÖSSE		180	270	400	600	850	1200	2000	3500	4700	7000
	Α	798	925	1065	1195	1143	1320.8	1574.8	2006.6	2006.6	2006.6
	В	544	623	710.5	812	831	869	1035	1245	1447	1877
	С	8	9	10.5	12	6.35	6.35	6.35	12.7	12.7	12.7
	D	268	307	350	400	406	425	508	507	711	875
	D1	268	307	350	400	406	425	508	507	711	875
	E	415	475	542	620	648	762	965	1016	1220	1370
	F	750	865	992	1122	1066.8	1239.9	1473.2	1892.3	1892.3	1892.3
ABMESSUNGEN	J	33.5	36	43	52	44.5	50.8	63.5	76	76	76
(mm)	Q	12	12	12	12	20	20	20	24	24	24
	R	M24	M30	M36	M36	M30	M30	M36	M36	M36	M36
	S	20	20	20	24	20	20	20	24	24	24
	T	M24	M30	M36	M36	M36	M36	M45	M48	M48	M48
	W	252	288.5	328	376	425.5	444.5	514.4	520.7	643.5	1003.3
	MAX. X & Y (4)	268	307	350	400	400	457	559	612	711	813
	MIN. X	167	192	232	285	343	381	457	533	609	686
	MIN. Y	170	195	235	285	343	381	457	533	609	686
GUMMIELEMENTE	pro Aussparung	2	2	2	2	2	3	3	3	4	6
	pro Kupplung	32	32	32	32	48	78	84	96	128	192
MAX. GESCHWINDIO	GKEIT (min ⁻¹) (1)	1460	1260	1090	975	1000	870	725	580	580	580
	W1	262.3	389.0	562.4	813.3	1059.9	1633.3	2594.6	5263.3	6450.8	8644.4
GEWICHT (3)	W2	266.78	414.0	633.4	909.1	710.3	965.1	1670.9	2732.2	3921.2	4895.6
(kg)	W3	297.4	437.3	651.2	946.7	929.8	1388.8	2631.4	4185.5	7196.1	7742.9
	GESAMT	826.5	1240.3	1847	2669.1	2700.0	3987.2	6896.9	12181.0	17568.1	21282.9
TRÄGHEIT (3)	J1	9.14	17.88	34.03	65.54	103.97	221.36	493.67	1653.41	2145.76	3063.85
(kg m ⁻²)	J2	28.80	59.30	119.5	220.2	163.89	306.74	743.28	2075.48	3056.46	3755.94
	J3	15.35	29.89	60.66	115.7	105.01	212.24	587.70	1466.3	2637.60	2927.67
ZULÄSSIGE ACHSVER	SCHIEBUNG (2)										
RADIAL (mm)		3.5	3.9	4.6	5.2	2.8	3.3	3.3	3.3	3.3	3.3
AXIAL (mm)		4.0	4.5	5.25	6.0	3.2	3.2	4.8	6.3	6.3	6.3
KONISCH (GRAD)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

- (1) Bei einem Betrieb über 80 % der angegebenen max. Kupplungsgeschwindigkeit wird empfohlen, die Kupplung dynamisch auszuwuchten.
- (2) Die Installationen sollten zunächst so genau wie möglich ausgerichtet werden. Unter Berücksichtigung der allmählich zunehmenden Achsverschiebung wird empfohlen, dass die erste Ausrichtung 25 % der oben genannten Werte nicht übersteigt. Die Kräfte, die auf die Antriebs- und angetriebene Maschine wirken, sollten berechnet werden, um sicherzustellen, dass die Herstellerangaben nicht überschritten werden.
- (3) Die Gewichte und Trägheiten werden über den mittleren Bohrungsdurchmesser (Kupplungen bis einschließlich PM600) bzw. dem max. Bohrungsdurchmesser (PM900 und größer) berechnet.
- (4) Übergroße Wellen können mit kundenspezifischen Antriebsflanschen mit großen Naben verwendet werden.

PM Walzenmotorkupplungen

Bremstrommeln können in Verbindung mit allen PM-Kupplungen verwendet und entweder an den Antriebsflansch oder die flexible Hälfte der Kupplung angebracht werden, wobei die Aussparung øA den Außendurchmesser der Kupplung aufnimmt.

Die empfohlenen Bremstrommeln für die jeweiligen Kupplungs-Größen sind in untenstehender Tabelle aufgeführt. Der Durchmesser "V" kann für Sonderanwendungen angepasst werden.

Typ PM-SDW Abmessungen (Ingot Motor)

KUPPLUNGSGRÖSSE		0	.7	1.3	3	6		1	2	18	3
MOTORBAUGRÖSSE		180M	180L	225L	250L	280M	280L	355L	400L	400LX	450L
PS		12.7	16	26	43	63	82	123	170	228	300
(min ⁻¹)		956	958	730	732	734	735	590	590	591	592
	Α	187.3	187.3	215.9	260.3	260	260	338	338	392	392
	В	168	168	178	215	231	231	284.5	324.5	341	341
	C	2	2	2	3	3	3	3.5	3.5	4	4
	D1	54	54	64	70	86	86	109	109	125	125
	F	171.4	171.4	196.8	235	240	240	312	312	360	360
	G	157	157	181	214.3	222	222	280	280	320	320
	Н	15.3	20.3	18.7	18.9	23.5	23.5	23.5	25.5	26	26
	J	11	11	12	14.5	11	11	14	14	16	16
	K	100	100	125	140	155	185	205	205	205	215
ABMESSUNGEN	K1	90	110	110	140	180	180	180	225	225	225
(mm)	L	42	42	55	60	75	75	95	100	100	110
	L1	70	70	90	105	120	120	135	155	155	170
	M	84	84	84	107	107	107	132	167	167	167
	N	28	28	28	35	35	35	40	45	45	45
	P	112	112	112	142	142	142	172	212	212	212
	V	250	315	315	400	500	500	500	630	630	630
	W	36	46	46	60	81	81	102	102	118	118
	MIN.Y	27	27	38	49	50	50	72	72	80	80
	MAX.Y	51	51	64	73	85	85	109	109	125	125
	Z	3	3	3	3	3	3	3	5	5	5

Die Motorleistungen wurden für Aussetzbetriebe S4 und S5 gewählt; 150 Starts pro Stunde mit einem Einschaltdauerfaktor von 40 %. Falls die Motoren außerhalb dieser Spezifikation betrieben werden, kontaktieren Sie bitte Renold Hi-Tec Couplings.

PM Walzenmotorkupplungen

Typ PM-MM Abmessungen (AISE Motor)

Serie 6 Walzenmotoren

KUPPLUNGSGRÖSSE		0.4	0	.7	1.3	3	6	1	2	18		27		40
MOTORBAUGRÖSSE		602	603	604	606	608	610	612	614	616	618	620	622	624
PS		7	10	15	25	35	50	75	100	150	200	275	375	500
(min ⁻¹)		800	725	650	575	525	500	475	460	450	410	390	360	340
	Α	161.9	187.3	187.3	215.9	260.3	260	338	338	392	440	440	440	490
	В	153	172	172	196	219	237	281.5	281.5	318	336.5	336.5	392.5	466
	С	1	2	2	2	3	3	3.5	3.5	4	4.5	4.5	4.5	5
	D1	51	54	54	64	70	86	109	109	125	143	143	143	162
	F	146	171.4	171.4	196.8	235	240	312	312	360	407	407	407	458
	G	133	157	157	181	221	222	280	280	320	367	367	367	418
	Н	13.5	15.3	15.3	18.7	18.9	18.5	18.5	18.5	21	21	21	21	21
	J	9.5	11	11	12	14.5	11	14	14	16	18.5	18.5	18.5	21
	K	102	121	121	133	171	178	190	216	241	254	305	305	305
ABMESSUNGEN	K1	83	95	95	146	146	171	222	222	286	286	286	286	286
(mm)	L	44.45	50.80	50.80	63.50	76.20	82.55	92.07	107.95	117.47	127.00	149.22	158.75	177.80
	L1	76.2	88.9	88.9	101.6	123.8	127	158.7	158.7	181	203.2	228.6	228.6	228.6
	M	70	83	83	95	111	111	124	124	137	149	168	178	232
	N	31	33	33	35	35	37	45	45	52	40	51	67	67
	Р	101	116	116	130	146	148	169	169	189	189	219	245	299
	V	203	254	254	330	330	406	483	483	584	584	584	584	584
	W	36	39	39	46	60	81	102	102	118	134	134	152.7	152.7
	MIN.Y	22	27	27	38	49	50	72	72	80	92	92	92	105
	MAX.Y	41	51	51	64	73	85	109	109	125	143	143	143	162
	Z	3	3	3	3	3	3	3	3	5	5	5	5	5

Serie 8 Walzenmotoren

KUPPLUNGSGRÖSSE		0.	.4	0.7	1.3		3	6	1	12	18	27
MOTORBAUGRÖSSE		802	802	803	804	806	808	810	812	814	816	818
PS		7.5	10	15	20	30	50	70	100	150	200	250
(min ⁻¹)		800	800	725	650	575	525	500	475	460	450	410
	Α	161.9	161.9	187.3	215.9	260.3	260.3	260	338	338	392	440
	В	153	153	172	182	203	219	237	281.5	281.5	318	336.
	С	1	1	2	2	3	3	3	3.5	3.5	4	4.5
	D1	51	51	54	64	70	70	86	109	109	125	143
	F	146	146	171.4	196.8	235	235	240	312	312	360	407
	G	133	133	157	181	221	221	222	280	280	320	367
	Н	13.5	15.3	15.3	18.7	18.9	18.5	18.5	18.5	18.5	21	21
	J	9.5	9.5	11	12	14.5	14.5	11	14	14	16	18.5
	K	102	102	121	121	133	171	178	190	216	241	254
ABMESSUNGEN	K1	83	95	95	146	146	171	171	222	222	286	286
(mm)	L	44.45	44.45	50.80	50.80	63.50	76.20	82.55	92.07	107.95	117.47	127.0
	L1	76.2	76.2	88.9	88.9	101.6	123.8	127	158.7	158.7	181	203.
	M	70	70	83	83	95	111	111	124	124	137	149
	N	31	31	33	33	35	35	37	45	45	52	40
	P	101	101	116	116	130	146	148	169	169	189	189
	V	203	254	254	330	330	406	406	483	483	584	584
	W	36	36	39	46	60	60	81	102	102	118	134
	MIN.Y	22	22	27	38	49	49	50	72	72	80	92
	MAX.Y	41	41	51	64	73	73	85	109	109	125	143
	Z	3	3	3	3	3	3	3	3	3	5	5

PM Technische Daten

1.1 **Prognose des Systems** Torsionsschwingungs- Eigenschaften.

Eine angemessene Prognose der Torsionsschwingungs-Eigenschaften des Systems kann mit folgender Methode erstellt werden:

- Verwenden Sie die in den Technischen Daten angeführte Drehsteifigkeit. Diese basiert auf Werten, die bei einer Umgebungstemperatur von 30°C gemessen wurden $(C_{Tdvn}).$
- 1.1.2 Wiederholen Sie die Berechnung von 1.1.1 unter Verwendung des max. Temperaturkorrekturfaktors St₁₀₀, und des dynamischen Vergrößerungskorrekturfaktors, M₁₀₀, für den korrigierten Gummiwerkstoff. Die untenstehenden Tabellenwerte können zur Anpassung der Drehsteifigkeit und des dynamischen Verstärkers verwendet werden d.h. $CT_{DYN} = CT_{DYN} X ST100$

GUMMIQUALITÄT	Temp _{max} °C	S _t						
SM 60	SM 60 100 S _{t100} = 0.60							
SM 70	100	St ₁₀₀ = 0.44						
SM 80	100	S _{t100} = 0.37						
SA	SM 60 gilt alsStandard"							

Gummiqualität	Dynamischer Verstärker bei 30°C (M ₃₀)	Dynamischer Verstärker bei 100°C (M ₁₀₀)						
SM 60	SM 60 8 13.1							
SM 70	SM 70 6 13.6							
SM 80	SM 80 4 10.8							
SA	SM 60 gilt als "Standard"							

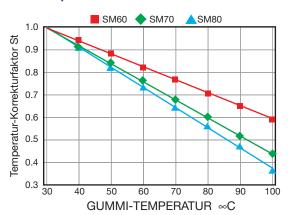
1.1.3 Überprüfen Sie die Berechnungen von 1.1.1 und 1.1.2. Die Kupplung wird für die Anwendung, in Bezug auf die Torsionsschwingungs-Eigenschaften, als geeignet angesehen, sofern der Geschwindigkeitsbereich frei von kritischen Werten ist, die den zulässigen, im Katalog veröffentlichten Wärmeverlustwert, nicht überschreiten. Falls sich im Geschwindigkeitsbereich ein kritischer Wert befindet, dann muss die Ist-Temperatur der Kupplung berechnet werden.

1.2 Prognose der Ist-Kupplungstemperatur und Drehsteifigkeit

1.2.1 Verwenden Sie die im Katalog angegebene Drehsteifigkeit; sie basiert auf Daten, die bei einer Temperatur von 30°C agemessen wurden und den dynamischen Verstärker bei 30°C (M₃₀).

1.2.2 Vergleichen Sie den Synthesewert der errechneten Wärmelast in der Kupplung (PK) bei gewünschter Geschwindigkeit, mit dem "Zulässigen Wärmeverlustwert" (PKW).

Der Temperaturanstieg der Kupplung


$${}^{\circ}C = \text{Temp}_{Kupp} = \left(\frac{P_K}{P_{KW}}\right) \times 70$$

Die Kupplungstemperatur = ϑ

⊕ = Temp_{Kupp} + Umgebungstemp.

- 1.2.3 Berechnen Sie den Temperatur-Korrekturfaktor, St, aus 1.3 (bei Kupplungstemperatur > 100°C S₊₁₀₀ verwenden). Berechnen Sie den dynamischen Verstärker gemäß 1.4. Wiederholen Sie die Berechnung mit den neuen Werten der Kupplungssteifigkeit und des dynamischen Verstärkers.
- 1.2.4 Berechnen Sie die Kupplungstemperatur gemäß 1.2. Wiederholen Sie die Berechnung, bis die Kupplungstemperatur mit den, in der Berechnung eingesetzten, Korrekturfaktoren für die Drehsteifigkeit und den dynamischen Verstärker, übereinstimmt.

1.3 **Temperatur-Korrekturfaktor**

1.4 Korrekturfaktor des dynamischen Verstärkers

Der dynamische Verstärker des Gummis unterliegt, auf die gleiche Weise wie die Drehsteifigkeit, Temperaturschwankungen.

$$M_T = \frac{M_{30}}{S_t} \qquad \qquad \Psi_T = \Psi_{30} \times S_t$$

Gummiqualität	Dynamischer Verstärker (M ₃₀)	Relative Dämpfung ^Φ 30							
SM 60	SM 60 8 0.78								
SM 70	SM 70 6 1.05								
SM 80	SM 80 4 1.57								
SA	SM 60 gilt als "Standard"								

PM Technische Daten - Standardblöcke

PM0,4 - PM130

KUPPLUNGSGRÖSSE		0.4	0.7	1.3	3	6	8	12	18	27	40	60	90	130
kW / min ⁻¹		0.045	0.07	0.14	0.32	0.63	0.84	1.25	1.89	2.83	4.19	6.28	9.43	13.62
MAXIMALES DREHMOMENT TH	Kmax (kNm)	0.43	0.67	1.3	3.0	6.0	8.0	12.0	18.0	27.0	40.0	60.0	90.0	130.0
WECHSELDREHMOMENT TKW	(kNm) (2)	0.054	0.084	0.163	0.375	0.75	1.0	1.5	2.25	3.375	5.0	7.5	11.25	16.25
ZULÄSSIGE VERLUSTWÄRME I	BEI	266	322	365	458	564	562	670	798	870	1018	1159	1209	1369
UMGEBUNGSTEMP. 30°C Pkw	(W)													
MAX. GESCHWINDIGKEIT (mi	in-1)	7200	6300	5400	4500	4480	3860	3450	2975	2650	2380	2050	1830	1600
DYNAMISCHE VERDREHSTEIF	igkeit (3)													
C _{Tdyn} (MNm/rad)														
Веі 0,25 Ткм	SM 60	0.003	0.005	0.012	0.029	0.073	0.097	0.146	0.218	0.328	0.485	0.728	1.092	1.577
	SM 70	0.005	0.008	0.018	0.043	0.104	0.138	0.207	0.311	0.466	0.691	1.036	1.554	2.245
	SM 80	0.009	0.013	0.030	0.072	0.134	0.179	0.269	0.403	0.605	0.896	1.344	2.016	2.912
Веі 0,50 Ткм	SM 60	0.005	0.008	0.019	0.046	0.104	0.138	0.207	0.311	0.466	0.691	1.036	1.554	2.245
	SM 70	0.007	0.010	0.025	0.058	0.139	0.185	0.277	0.416	0.624	0.924	1.386	2.079	3.003
	SM 80	0.010	0.015	0.036	0.086	0.181	0.241	0.361	0.542	0.813	1.204	1.806	2.709	3.913
Веі 0,75 Ткм	SM 60	0.008	0.012	0.029	0.069	0.154	0.205	0.308	0.462	0.693	1.027	1.540	2.310	3.337
	SM 70	0.009	0.014	0.033	0.078	0.199	0.265	0.398	0.596	0.895	1.325	1.988	2.982	4.307
	SM 80	0.012	0.018	0.043	0.102	0.265	0.353	0.529	0.794	1.191	1.764	2.646	3.969	5.733
Bei 1,0 Tĸn	SM 60	0.011	0.018	0.043	0.102	0.224	0.299	0.448	0.672	1.008	1.493	2.240	3.360	4.853
	SM 70	0.012	0.018	0.044	0.105	0.277	0.370	0.554	0.832	1.247	1.848	2.772	4.158	6.006
	SM 80	0.014	0.021	0.051	0.122	0.382	0.510	0.764	1.147	1.720	2.548	3.822	5.733	8.281
RADIALE STEIFIGKEIT (N/mm)	SM 60	685	723	1240	2050	6276	6966	7980	9140	10460	11069	12680	14500	16400
- KEINE LAST	SM 70	1070	1130	1950	3240	8400	9320	10680	12230	14000	15960	18280	20916	23646
	SM 80	1740	1820	3210	5190	11400	12650	14500	16600	19000	21660	24810	28200	32100
RADIALE STEIFIGKEIT (N/mm)	SM 60	1430	1510	2600	4300	13180	14630	16780	19200	21970	25050	28700	32820	37110
bei 50% Tĸmax	SM 70	1760	1860	3200	5240	13800	15320	17550	20100	23000	26220	30040	34360	38850
	SM 80	2510	2650	4480	7450	16500	18320	20980	24000	27500	31350	35910	41100	46450
AXIALE STEIFIGKEIT (N/mm)	SM 60	458	502	714	970	1060	1176	1347	1543	1766	2010	2306	2638	2980
- KEINE LAST	SM 70	753	828	1180	1610	2748	3050	3495	4000	4580	5220	5980	6840	7740
	SM 80	1040	1160	1670	2230	4120	4573	5240	6000	6867	7828	8968	10260	11600
AXIALE STEIFIGKEIT (N/mm)	SM 60	920	1050	1540	2020	2300	2500	2920	3310	3830	4360	4980	5720	6460
bei 50% Tĸmax	SM 70	1100	1360	1920	2610	2750	3050	3500	4000	4580	5220	5980	6840	7740
	SM 80	1250	1450	2060	2750	4120	4570	5240	6000	6870	7830	8970	10260	11600
MAX. AXIALKRAFT (N)	SM 60	66	72	102	128	1501	1668	1913	2178	2502	2845	3267	3728	4218
bei 50% T _{Kmax} (1)	SM 70	78	80	112	140	1648	1825	2099	2374	2747	3139	3581	4101	4640
	SM 80	85	106	148	185	2237	2482	2845	3257	3728	4265	4866	5572	6298

⁽¹⁾ Die Kupplungen "rutschen" axial, sobald die max. Axialkraft erreicht ist.

(2) Nur bei 10 Hz beträgt das zulässige Wechseldrehmoment, bei einer niedrigeren bzw. höheren Frequenz, fe = Tkw

$$\sqrt{\frac{10 \text{Hz}}{\text{fe}}}$$

(3) Diese Werte sollten, bei Gummitemperaturen gemäß Abschnitt "Konstruktionshinweise", korrigiert werden.

$$T_{KN} = \underline{T_{KMAX}}$$

PM Technische Daten - Standardblöcke

PM180 - PM7000

KUPPLUNGSGRÖSSE		180	270	400	600	850	1200	2000	3500	4700	7000
kW / min ⁻¹		18.86	28.29	41.91	62.86	89.01	125.67	209.45	366.53	492.20	733.06
MAXIMALES DREHMOMENT TK	max (kNm)	180.0	270.0	400.0	600.0	850.0	1200	2000	3500	4700	7000
WECHSELDREHMOMENT TKW (k	Nm) (2)	22.5	33.75	50.00	75.00	106.2	150.0	250.0	437.5	587.5	875.0
ZULÄSSIGE VERLUSTWÄRME BE	1	1526	1735	1985	2168						
UMGEBUNGSTEMP. 30°C Pkw (V	N)										
MAX. GESCHWINDIGKEIT (min	·1)	1460	1260	1090	975	1000	870	725	580	580	580
DYNAMISCHE VERDREHSTEIFIG	KEIT (3)										
C _{Tdyn} (MNm/rad)											
bei 0,25 TĸN	SM 60	2.184	3.276	4.853	7.280	14.600	22.500	40.800	74.900	102.000	148.000
	SM 70	3.108	4.662	6.838	10.360	22.000	34.000	61.700	114.000	154.000	225.000
	SM 80	4.032	6.048	8.960	13.440	36.600	56.500	102.000	195.000	257.000	376.000
bei 0,50 Ткм	SM 60	3.108	4.661	6.838	10.360	23.100	35.500	64.000	117.000	161.000	232.000
	SM 70	4.158	6.237	9.240	13.860	29.900	46.100	83.300	153.000	209.000	304.000
	SM 80	5.418	8.127	12.040	18.060	43.800	67.600	123.000	226.000	307.000	443.000
bei 0,75 Ткм	SM 60	4.620	6.720	10.269	15.400	36.000	55.300	99.100	178.000	249.000	358.000
	SM 70	5.964	8.946	13.251	19.880	40.600	62.400	115.000	205.000	232.000	409.000
	SM 80	7.938	11.907	17.64	26.480	52.500	80.900	147.000	268.000	367.000	534.000
bei 1,0 TkN	SM 60	6.720	10.080	14.931	22.400	54.000	82.900	149.000	265.000	372.000	533.000
	SM 70	8.316	12.474	18.480	27.720	54.700	84.100	151.000	272.000	379.000	546.000
	SM 80	11.466	17.199	25.480	38.220	63.000	97.100	175.000	320.000	439.000	638.000
RADIALE STEIFIGKEIT (N/mm)	SM 60	18270	20920	23820	27300	37800	41900	54900	57500	76500	115000
- KEINE LAST	SM 70	26350	30170	34340	39370	60300	66200	87300	91100	122000	182000
	SM 80	35750	40945	46600	53400	95800	105000	140000	145800	195000	291000
RADIALE STEIFIGKEIT (N/mm)	SM 60	41350	47350	53890	61780	85540	94820	124240	130120	173345	260245
bei 50% T _{Kmax}	SM 70	43290	49560	56420	64680	99073	108766	143434	149677	200446	299026
	SM 80	51760	59260	67460	77330	38714	152040	202720	211118	282360	421368
AXIALE STEIFIGKEIT (N/mm)	SM 60	3324	3800	4332	4966	18200	20800	27700	28400	37800	56700
- KEINE LAST	SM 70	8620	9870	11230	12880	30300	34300	45600	47000	62700	94000
	SM 80	12924	14800	16844	19310	35000	39800	49300	75000	100000	150000
AXIALE STEIFIGKEIT (N/mm)	SM 60	7200	8240	9380	10760	39440	45074	60026	61543	81913	122869
bei 50% T _{Kmax}	SM 70	8620	9870	11230	12880	30300	34300	45600	47000	62700	94000
	SM80	12920	14800	16840	19310	35000	39800	49300	75000	100000	150000
MAX. AXIALKRAFT (N)	SM 60	4709	5396	6131	7034	-	-	-	-	-	-
bei 50% T _{Kmax} (1)	SM 70	5160	5915	6730	7720	-	-	-	-	-	-
	SM 80	7014	8025	9143	10477	-	-	-	-	-	-

⁽¹⁾ Die Kupplungen "rutschen" axial, sobald die max. Axialkraft erreicht ist.

(2) Nur bei 10 Hz beträgt das zulässige Wechseldrehmoment, bei einer niedrigeren bzw. höheren Frequenz, fe = Tkw

$$\sqrt{\frac{10Hz}{fe}}$$

(3) Diese Werte sollten, bei Gummitemperaturen gemäß Abschnitt "Konstruktionshinweise", korrigiert werden.

$$T_{KN} = \frac{T_{KMAX}}{3}$$

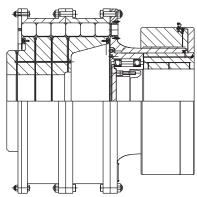
PM Technische Daten - Sonder-Rundblöcke

PM12 - PM600

KUPPLUNGSGRÖSSE		12	18	27	40	60	90	130	180	270	400	600
kW / min ⁻¹		1.25	1.89	2.83	4.19	6.28	9.43	13.62	18.86	28.29	41.91	62.86
NENNDREHMOMENT TKN (kNn	1)	3.2	4.8	7.2	10.67	15.99	24.0	34.67	48.0	72.0	106.67	159.99
MAXIMALES DREHMOMENT TKm	ax (kNm)	12.0	18.0	27.0	40.0	60.0	90.0	130.0	180.0	270.0	400.0	600.0
WECHSELDREHMOMENT TKW ((Nm) (2)	1.0	1.5	2.25	3.334	5.0	7.5	10.833	15.0	22.5	29.0	42.75
ZULÄSSIGE VERLUSTWÄRME B	EI	130	150	180	220	260	300	340	375	440	490	565
UMGEBUNGSTEMP. 30°C Pkw (W)											
MAX. GESCHWINDIGKEIT (mi	n ⁻¹)	3450	2975	2650	2380	2050	1830	1600	1460	1260	1090	975
DYNAMISCHE VERDREHSTEIFIG	GKEIT (3)											
C _{Tdyn} (MNm/rad)												
Bei 0,25 Tĸn	SM 60	0.053	0.08	0.12	0.18	0.27	0.613	0.885	1.226	1.839	2.724	4.087
	SM 70	0.072	0.109	0.163	0.241	0.362	0.895	1.293	1.79	2.685	3.978	5.967
	SM 80	0.1	0.149	0.224	0.322	0.498	0.747	1.079	1.493	2.24	3.319	4.98
Bei 0,50 TkN	SM 60	0.088	0.132	0.198	0.293	0.44	0.791	1.143	1.582	2.373	3.516	5.273
	SM 70	0.104	0.155	0.233	0.345	0.52	1.05	1.517	2.1	3.15	4.667	7
	SM 80	0.159	0.239	0.358	0.53	0.796	1.193	1.724	2.387	3.58	5.304	7.956
Bei 0,75 TĸN	SM 60	0.168	0.251	0.377	0.559	0.84	1.154	1.667	2.308	3.462	5.129	7.693
	SM 70	0.162	0.243	0.364	0.539	0.809	1.317	1.902	2.634	3.951	5.853	8.78
	SM 80	0.214	0.321	0.481	0.713	1.069	1.603	2.316	3.207	4.81	7.126	10.689
Веі 1,0 Ткм	SM 60	0.285	0.427	0.641	0.948	1.424	1.91	2.759	3.82	5.73	8.489	12.733
	SM 70	0.256	0.385	0.577	0.855	1.282	1.85	2.672	3.7	5.55	8.222	12.333
	SM 80	0.328	0.491	0.737	1.092	1.638	2.457	3.549	4.913	7.37	10.919	16.378
RADIALE STEIFIGKEIT (N/mm)	SM 60	2619	3000	3433	3914	4497	5132	5798	6464	7398	8438	9657
- KEINE LAST	SM 70	3742	4286	4905	5592	6425	7333	8284	9236	10570	12050	13798
	SM 80	6138	7030	8044	9170	10538	12025	13586	15147	17335	19770	22628
RADIALE STEIFIGKEIT (N/mm)	SM 60	9510	10900	12470	14215	16300	18640	21000	23480	26870	30650	35070
bei Tĸĸ	SM 70	9056	10374	11870	13530	15550	17745	20048	22350	25580	29176	33390
	SM 80	9132	10460	11968	13644	15678	17892	20214	22535	25790	29410	33666
AXIALE STEIFIGKEIT (N/mm)	SM 60	1122	1285	1470	1675	1925	2198	2482	2768	3168	3613	4135
- KEINE LAST	SM 70	1495	1710	1960	2234	2568	2930	3310	3690	4220	4818	5514
	SM 80	2545	2915	3335	3800	4368	4986	5632	6278	7187	8197	9380
AXIALE STEIFIGKEIT (N/mm)	SM 60	2918	3340	3825	4360	5010	5718	6460	7200	8242	9400	10750
bei Ткм	SM 70	3067	3510	4020	4580	5266	6000	6790	7570	8660	9880	11300
	SM 80	3218	3686	4218	4808	5526	6306	7124	7942	9090	10368	11865
MAX. AXIALKRAFT (N)		2943	3335	3728	4415	5003	5690	6475	7161	8240	9418	10791
bei Ткn (1)												

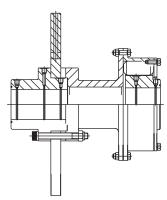
⁽¹⁾ Die Kupplungen "rutschen" axial, sobald die max. Axialkraft erreicht ist.

(2) Nur bei 10 Hz beträgt das zulässige Wechseldrehmoment, bei einer niedrigeren bzw. höheren Frequenz, fe = Tkw

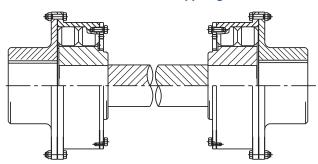

$$\sqrt{\frac{10Hz}{fe}}$$

(3) Diese Werte sollten, bei Gummitemperaturen gemäß Abschnitt "Konstruktionshinweise", korrigiert werden.

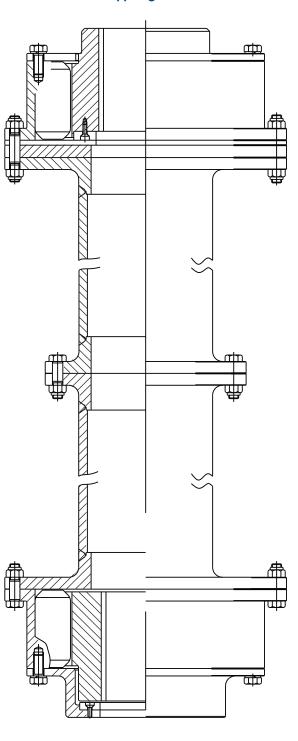
PM Designmöglichkeiten


Die PM-Kupplung kann Kundenanforderungen angepasst werden. Details hierzu finden Sie in den unten aufgeführten Designmöglichkeiten. Eine umfassendere Liste erhalten Sie auf Anfrage von Renold Hi-Tec.

Drehmomentbegrenzungs-Kupplung


In Verbindung mit einem Drehmomentbegrenzer zur Verhinderung von Schäden an der angetriebenen bzw. antreibenden Maschine bei Stoßbelastungen.

Bremsscheibenkupplung


In Verbindung mit einer Bremsscheibe zum Einsatz an Kränen, Gebläse und Förderantrieben. (Bremstrommelkupplungen sind ebenfalls erhältlich).

Gelenkwellenkupplung

Gelenkwellenkupplung. Wird verwendet, um den Abstand zwischen Wellenenden zu erweitern; bietet eine höhere Versatzfähigkeit.

Vertikale Kupplung mit Distanzstück

Kupplung mit Distanzstück. Werden verwendet, um den Abstand zwischen Wellenenden zu erweitern und um einen Zugriff zur angetriebenen und Antriebsmaschine zu ermöglichen.

Auswahlverfahren

Anhand der Dauerleistung (P) und der Betriebsdrehzahl (n) berechnen Sie, mittels der folgenden Formel, das Drehmoment der Anwendung T_{NORM}:

$$T_{NORM} = 9549 x (P/n) Nm$$

- Wählen Sie den Betriebsfaktor des Hauptantriebs (Fp) aus untenstehender Tabelle.
- Wählen Sie den Betriebsfaktor der angetriebenen Gerätschaft (Fm) auf Seite 55.
- Der Mindest-Betriebsfaktor wurde auf 1,5 festgelegt.
- Berechnen Sie T_{MAX} anhand folgender Formel:

$$T_{MAX} = T_{NORM} (Fp + Fm)$$

- Wählen Sie die Kupplung so aus, dass T_{MAX} < T_{Kmax}
- Sicherstellen, dass n < max. Drehzahl der Kupplung (aus den technischen Daten der Kupplung).
- Überprüfen, dass der Bohrungsdurchmesser der Kupplung dmin < d < dmax ist.
- Bei Überschreitung der Angaben im Katalog nehmen Sie bitte Kontakt mit uns auf.

Hinweis: Eine dynamische Auswuchtung ist notwendig, wenn 80 % der max. Geschwindigkeit erreicht werden.

Anwendungsdrehmoment (Nm) T_{NORM} =

Spitzendrehmoment (Nm) $T_{MAX} =$

Nenndrehmoment der Kupplung gemäß DIN T_{KN} 740 (kNm) (mit Betriebsfaktor = 3, gemäß Renold Hi-Tec Couplings Standard)

Max. Drehmoment der Kupplung gemäß DIN $T_{\text{Kmax}} =$ 740 (kNm)

Dauerleistung durch die Kupplung zu übertragen (kW)

Drehzahl der Kupplungsanwendung (min⁻¹) n

Fр Betriebsfaktor des Hauptantriebs

Betriebsfaktor der angetriebenen Gerätschaft Fm dmax Max. Bohrungsdurchmesser der Kupplung (mm)

dmin Min. Bohrungsdurchmesser der Kupplung (mm)

Es liegt in der Verantwortung des Systemdesigners, dass die anderen Komponenten des Systems nicht durch die Anwendung der Kupplung beschädigt

werden. Die angegebenen Betriebsfaktoren dienen als erste Auswahlhilfe.

Betriebsfaktoren des Hauptantriebs

Betriebsfaktore	en des Hauptan	triebs	Fp
Dieselmotor	1 Zylinder		*
	2 Zylinder		*
	3 Zylinder		2,5
	4 Zylinder		2,0
	5 Zylinder		1,8
	6 Zylinder		1,7
Mehr als	6 Zylinder		1,5
V-Motor			1,5
Benzinmotor			1,5
Turbine			0
Elektromotor			0
Asynchronmot	or		0
Synchronmoto	r		1,5
Drehzahlvariab	ler Antrieb*		
LCI-Umrichter (LCI)	- 6 Puls	1,0
		- 12 Puls	0,5
PWM/Quasiqu	adrat		0,5
Direktumrichte	er		0,5
Kramer-Scherb	ius-Kaskade		1,5
			I

*Die Anwendung dieser Antriebstypen ist hochspezialisiert. Es wird daher empfohlen, Renold Hi-Tec Couplings zur weiterführenden Beratung zu kontaktieren.

Die endgültige Auswahl sollte durch Renold Hi-Tec Couplings getroffen werden.

Betriebsfaktoren - angetriebene Gerätschaft

Anwendung	Typischer Faktor der angetriebenen Gerätschaft (Fm)
Rührwerke Reine Flüssigkeiten Flüssigkeiten und F	1.5 estkörper 2.0
Flüssigkeiten mit verä	inderlicher Dichte 2.0
Gebläse Zentrifugalgebläse Schaufelradgebläse Flügelradgebläse	1.5 (Roots-Gebläse) 2.5 2.0
Brauereien und Breni Flaschenfüllmaschi Läuterbottich	
Ziegeleimaschinen	3.0
Konservenmaschinen	1.5
Zuckerrohrschneider	3.0
Schrottpressen	3.0
Zugmaschinen - Auss	etzbetrieb 2.5
Lehmverarbeitungsm	aschinen 2.5
Kompressoren	
Axialkompressor Kreiselkompressor	1.5 1.5
Schaufelkompresso	r 2.5
Kolbenkompressore Rotationskompressore	
Förderanlagen – gleichn	
Belastung	
Plattenband Montageband	2.0 1.5
Gurtförderband	1.5
Kübelfördergerät Kettentransportbar	2.0 nd 2.0
Transportkette Ofenförderer	2.0
Schneckenförderer	2.5 2.0
Förderanlagen – Schv ungleichmäßige Bela Plattenband Montageband Gurtförderband Kübelfördergerät Kettentransportbar Transportkette Ofenförderer Pendelförderer Schneckenförderer Schutelrutsche	dung 2.0 2.0 2.0 2.0 2.5
Hebezeuge alle Bewegungen	3.0
Brecher	
Erz Stein	3.0 3.5
Zucker (1)	3.5
Baggerwerke Kabeltrommeln	3.5
Förderantriebe	2.5 2.0
Schneidkopfantrieb Kalibrierantriebe	e 3.5 3.5
Manövrierwinden	3.0
Pumpen Siebantriebe	3.0 3.0
Schüttwerke Andere Winden	3.0 2.0
Kraftmesser	1.5
Höhenförderer	1.5
Kübelaufzug	3.0
	adung 2.0 1.5
mit Zentrifugalentl	
mit Zentrifugalentli Rolltreppen Lastaufzüge	2.0
mit Zentrifugalentla Rolltreppen Lastaufzüge mit Schwerkraftent	2.0
mit Zentrifugalentla Rolltreppen Lastaufzüge mit Schwerkraftent Gebläse	2.0
mit Zentrifugalentla Rolltreppen Lastaufzüge mit Schwerkraftent Gebläse Radialgebläse Kühlturmlüfter	2.0 2.0 1.5 2.0
mit Zentrifugalentla Rolltreppen Lastaufzüge mit Schwerkraftent Gebläse Radialgebläse	2.0 2.0 1.5 2.0 2.0 2.0
mit Zentrifugalentla Rolltreppen Lastaufzüge mit Schwerkraftent Gebläse Radialgebläse Kühlturmlüfter Druckgebläse	2.0 2.0 1.5 2.0 2.0 2.0
mit Zentrifugalentla Rolltreppen Lastaufzüge mit Schwerkraftent Gebläse Radialgebläse Kühlturmlüfter Druckgebläse Sauggebläse (ohne E Zuführer Plattenbandfördere	2.0 2.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0
mit Zentrifugalentla Rolltreppen Lastaufzüge mit Schwerkraftent Gebläse Radialgebläse Kühlturmlüfter Druckgebläse Sauggebläse (ohne E	2.0 2.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0

Anwendung	Typischer Faktor der angetriebenen Gerätschaft (Fm)	
Generatoren Wechselstromgenerator Gleichstromgenerator Schweißgenerator Hammermühlen	r 1.5 1.5 2.2 4.0	
Holzindustrie Entrindungstrommeln Besäumer-Zufuhr angetriebene Rollenbal Scheitholzförderer - sch Scheitholzförderer - hoi Kehrrollen Hobelzuführvorrichtun Hobelbodenketten Hobelbühnen, schräg g Sägemaschine Plattenförderanlagen Sortiertische Schneidegatterzuführu Metallfertigung	3.0 2.5 nn 2.5 rräg steigend 2.5 rizontal 2.5 gen 2.0 estellt 2.0 2.0 2.0 2.0	
Stangenaufrollmaschin Brecher - Erz Transportrollen Schmiedemaschine Walzmaschine Rollentisch Schere Rohrmühle (Pilger)	4.0 2.0 * * 3.0	
Drahtwalzwerk Metallindustrie Walzwerke - Beschickur Walzwerke - Hauptantr Umformmaschinen Schlitzmaschinen Transportanlagen - nich - umkehrt Drahtziehbänke Drahtspulmaschinen	2.5 2.0 nt umkehrbar	
Metallwalzwerke Blockwalzwerk Wickler - Warmwalzwerk & Kaltwalzwerke Kühlwalzwerke Türöffner Ziehbänke Staucherantriebe Transportrollen, Reversi Blockdrücker Warmwalzwerke Kokillenwagen Manipulatoren Stabstahlwalzwerke Lochwalzwerke Koksausdrückmaschine Rollenantriebe Aufrolltrommeln Stabwalzwerke Vorwalzwerk-Ablagetist Auslaufrollgang Sägen - warm, kalt Anstellantriebe Röhrenstreifen-Walzwe Schlitzmaschinen Brammenwalzwerke Tiefofendeckel-Antriebe Strecker Tischtransfer & Auslauf Drucklager Fahrantrieb Rohrförderrollen Ordner Drahtzug	Kaltwalzwerk 2.5	
Mühlen, rotierend Kugelmühle Zementöfen Kühl- und Trockentromi Öfen Hammermühlen Kegelbrecher Mischtrommel Rohrmühle Entsandungstrommeln	2.5 2.5 meln 2.5 2.5 3.5 2.5 3.0 2.5 2.5 2.5	

, amendang	der angetriebenen Gerätschaft (Fm)	
Bergbau Kettenkratzerförderer	3.0	
- Bandförderei - Kübelaufzug - Kettenförder - Schneckenfö Teilschnittmaschine Gebläse - Belüftung Beförderungen Klumpenbrecher Feinmahlanlage Kreiselpumpe - Stoßheber - Hubkolbenpum - Zentrifugalpum Auslegermaschine Doppelwalzenlader Grubenförderer	er 1.5 er 1.75 rderer 1.5 3.0 2.0 2.0 1.5 2.0 2.0 2.0 3.0 9e 3.0	
Mischer Betonmischer Fassmischer	2.0 2.0	
Ölindustrie Kühler Ölförderpumpen Paraffinfilterpressen Drehöfen	2.0 3.0 2.0 2.5	
Papiermühlen Entrinder - hydraulische Imechanische Entrinde Entrindungstrommel (Mahlholländer und Pu Bleichholländer Kalander Hackschnitzelmaschine (Schneidemaschinen, Gu Gautschwalze Schneidemaschinen, Gu Zylinder Trockner Filzspannvorrichtung Filzreinigungsvorrichtu Jordan Längsschneidvorrichtu Rindenschlepper Druckpressen Holzschleifer Abwickler Stoffbütten Saugwalze Wäscher und Eindicker Auf- und Abwickler	r 3.5 r 3.5 nur Stirnrad) 3.5 lper 3.5 lper 3.5 lper 3.5 lper 2.0 2.0 e 2.0 inicht lummiwalzer) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	
Propeller Marine - Festpropeller - Verstellpropell	2.0 2.0 er 2.0	
Zugmaschinen Schlepper	2.5	
Pumpen Zentrifugalpumpe Kolbenpumpe - doppe Einfach wirkend – 1 oc 3 oder mehr Zylinder Rotationspumpe – Zahnr	ler 2 Zylinder 3.0 3.0	
Gummiindustrie Banburymischer Gummikalander Gummimühle (2 oder Schneidwerk Reifenaufbaumaschine Reifen- und Schlauchp Luftschlauchextruder (2	2.5 e 2.5 ressenöffner 2.0	
Siebe Luftfilter Siebrost Trommelsiebe (Steine Wasserumlaufsiebe Rüttelsiebe	1.5 2.5 oder Kies) 2.0 1.5 2.5	
Abwasserentsorgungsar Textilindustrie Winden	2.0 2.0 2.5	

Anwendung

Typischer Faktor

Auswahlbeispiele

Beispiel 1

Auswahl eines 6-Zylinder-Dieselmotors, 750 kW bei 900 min-1, zum Antrieb einer Zentrifugalpumpe.

> Die Kupplung ist am Schwungrad montiert Wellendurchmesser der Pumpe = dm

900 min-1 750 kW 95 mm 30°C dm temp Fp 1,7 Fm 1,5

 $T_{NORM} = (P/n) \times 9549 \text{ Nm}$

= (750/900) x 9549 Nm

7.958 kNm

 $T_{MAX} = T_{NORM} (Fp + Fm)$ = 7,958 (1.7 + 1.5) 25,466 kNm

Die Anwendung wird als leichtindustriell eingestuft und eine Kupplung vom Typ RB sollte gewählt werden. Laut RB Katalog hat RB 3.86 folgende Spezifikationen:

 T_{KMAX} = 27,4 kNm $T_{KN} = 9,159 \text{ kNm}$

wodurch folgende Bedingungen erfüllt sind:

- $T_{MAX} < T_{Kmax}$ (25,466 < 27,4) kNm
- T_{NORM} < T_{KN} (7,859 < 9,159) kNm
- n < Max. Drehzahl der Kupplung (900 < 2500) min-1
- dmin < dm < dmax (80 < 95 < 170) mm

Berechnungsservice

- Seit über 50 Jahren sind wir im Bereich der Torsionsschwingungsanalysen für verschiedenste Maschinentypen führend. Wir haben speziell für diesen Zweck interne Computerprogramme entwickelt.
- Ein Beratungsdienst hilft Kunden bei der Auswahl der richtigen Produkte für die jeweiligen Anwendungen.
- Renold Hi-Tec Couplings hat sich mit den Analysetechniken in der Dieselmotorenbranche einen Namen gemacht.

Beispiel 2

▲ Auswahl eines Asynchronmotors, 800 kW bei 1498 min⁻¹, zum Antrieb einer Drehkolbenpumpe.

Motorwelle = dp Pumpenwelle = dm 800 kW 1498 min⁻¹ n 95 mm dm 85 mm temp 30°C Fp Fm 2 T_{NORM} = (P/n) x 9549 Nm (800/1498) x 9549 Nm 5..1 kNm T_{MAX} = T_{NORM} (Fp + Fm) 5,1 (0 + 2) kNm

Für die Anwendung ist eine Stahlkupplung (nach Kundenspezifikation) erforderlich und eine Kupplung vom Typ PM sollte gewählt werden. Laut PM Katalog hat PM12 folgende Spezifikation:

 $T_{Kmax} = 12 kNm$

wodurch folgende Bedingungen erfüllt sind:

- ▲ T_{MAX} < T_{Kmax} (10,2 < 12,0) kNm
- n < Max. Drehzahl der Kupplung (1498 < 3450) min-1
- dmin < dp < dmax (72 < 95 < 109) mm

10,2 kNm

- dmin < dm < dmax (72 < 85 < 109) mm
- In der Schwerindustrie haben die Renold Hi-Tec Techniker viele Torsionsschwingungsanalysen durchgeführt. Zum Beispiel: statische transiente und Drehmoment-Verstärkungsfaktoren (TAF) bei Elektromotoren-Antriebssträngen in Zementwerken, Walzwerken, Verdichtersträngen, Synchronmotor-Anläufen und Anwendungen mit variabler Frequenz (LCI, Kramer/Scherbius/PWM).
- Auf Seite 30 sind zwei Torsionsschwingungsanalysen, die von Renold Hi-Tec Technikern erzeugt wurden, als Beispiele angeführt.

Transiente Analyse

Berechnete Beispiele

Unten dargestellt sind zwei verschiedene transiente Torsionsschwingungsanalysen, die von Renold Hi-Tec Technikern durchgeführt werden können. Damit wird gewährleistet, dass die optimalen Lösungen durch die richtige Wahl der Drehsteifigkeit und Dämpfungseigenschaften der Kupplung erreicht werden. Neben den aufgezeigten Beispielen – Synchron-Resonanz und LCI-Umrichter – hat Renold Hi-Tec Couplings auch Erfahrung in anderen Bereichen, wie z. B. Drehmomentverstärkung, Geräte zur el. Steuerung der Geschwindigkeit, PWM, Scherbius/Kramer, Kurzschluss sowie Wiederverbindungen el. Schaltungen an mechanischen Systemen.

Beispiel 1

Seit Juni 1962 produzieren wir elastische Kupplungen für Anwendungen mit Synchronmotoren, zur Reduzierung (durch Dämpfung) des schädigenden Wechseldrehmoments, das bei Beschleunigungen durch die erste Resonanzfrequenz in das System eingeführt wird.

Diagramm A

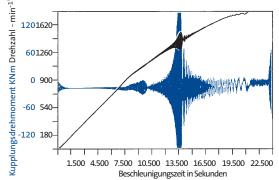
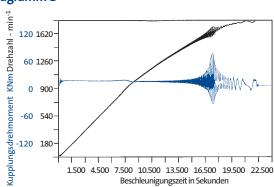



Diagramm A zeigt das Wechseldrehmoment, das in der Motorwelle erfahren wird, wenn das System fest (oder über eine Zahn- bzw. Membrankupplung) mit dem angetriebenen System verbunden ist.

Diagramm B

In Diagramm B wird dasselbe System, verbunden über eine DCB-Kupplung, aufgezeigt. PM-Kupplungen kommen in solchen Anwendungen ebenfalls zum Einsatz..

Beispiel 2

Seit 1981 produzieren wir elastische Kupplungen für LCI-Umrichter-Antriebe, zur Steuerung der Zwangsmodusbedingungen durch die erste natürliche Frequenz mittels gezielter Auswahl der Drehsteifigkeit und des Dämpfungsverhaltens.

Diagramm C

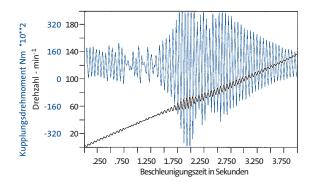


Diagramm C zeigt ein typisches Motor/Gebläse-System, das fest (oder über eine Zahn- bzw. Membrankupplung) verbunden ist und bei dem schädigende Drehmomente in der Motorwelle aufgetreten wären.

Diagramm D

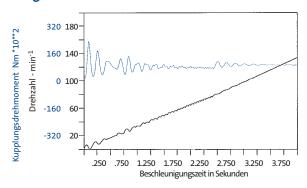


Diagramm D zeigt die entsprechende, von Renold Hi-Tec Couplings entwickelte Lösung unter Verwendung einer PM Kupplung.

Informationen zum Material - Gummi

Die Gummiblöcke und -elemente, die in den Kupplungen von Renold Hi-Tec Couplings verwendet werden, sind entscheidende Faktoren der Kupplungsausführung. Die Herstellung wird strengen Qualitätskontrollen unterzogen und häufige Prüfungen sind Teil des Fertigungsprozesses.

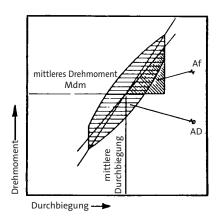
Gummi-unter-Druck

Die Ausführungen verwenden keine fest verbundenen Komponenten, was den Einsatz vieler synthetischen Elastomeren erlaubt. Diese Elastomere bieten bei spezifischen Anwendungen gegenüber anderen Materialien, überragende Vorteile und Renold Hi-Tec Couplings hat in der Anwendungstechnik in entsprechenden Fachgebieten eine führende Rolle.

Gummimischung

Kennzeichnungsetikett	Natur Rot (F, NM)	Styrol- Butadien Grün (SM)	Neopren Gelb (CM)	Nitril Weiß (AM)	Styrol- Butadien Blau (S)	Silicon Blau (Si)
Beständigkeit gegenüber Druckverformungsrest	Gut	Gut	Ausreichend	Gut	Ausreichend	Gut
Beständigkeit gegenüber Durchbiegung	Ausgezeichnet	Gut	Gut	Gut	Gut	Gut
Beständigkeit gegenüber Schneiden	Ausgezeichnet	Gut	Gut	Gut	Ausreichend	Ausreichend
Beständigkeit gegenüber Abrieb	Ausgezeichnet	Gut	Gut	Gut	Gut	Ausreichend
Beständigkeit gegenüber Oxidierung	Ausreichend	Ausreichend	Sehr gut	Gut	Ausreichend	Ausgezeichnet
Beständigkeit gegenüber Öl & Benzin	Schlecht	Schlecht	Gut	Gut	Schlecht	Gut
Beständigkeit gegenüber Säuren	Gut	Gut	Ausreichend	Ausreichend	Gut	Gut
Beständigkeit gegenüber Wasserquellung	Gut	Gut	Gut	Gut	Gut	Gut
Max. Betriebstemp.; konstant	80°C	100 °C	100 °C	100°C	100 °C	200 ⁰ C
Min. Betriebstemperatur	-50 ⁰ C	-40 ⁰ C	-30 ⁰ C	-40 ⁰ C	-40 ⁰ C	-50 ⁰ C
			Feuerbeständig		Hohe	
					Dämpfungsfähigkeit	
Gummiblock-Typen						
DCB PM	NM	SM	CM	AM	S	Si
	Renold 45					
	Renold 60	Renold 50	Renold 50	Panold	Renold 60	
SONDER WB	70	Renold 70	Renold 70	Renold 70	Renold 70	Renold 70
SONDER WB						
	Renold 80	Renold 80		Renold 90		

Dämpfungseigenschaften


Das Dämpfungsverhalten von Kupplungen hängt direkt mit der Drehsteifigkeit und invers mit der Frequenz der gegebenen Gummiqualität zusammen. Diese Beziehung wird durch den dynamischen Verstärker M beschrieben und variiert je nach Härte der verschiedenen Gummitypen.

$$M = \frac{K}{C\omega}$$

$$Drehmoment = (k + ic\omega) ae^{i\omega t + \delta}$$

$$Durchbiegun = ae^{i\omega t}$$

$$\tan \delta = C\omega = 1$$

$$\mathscr{V} = AD = 2\pi$$
Af

Diese Eigenschaft kann auch als verhältnismäßige Dämpfung ausgedrückt werden, also das Verhältnis der Dämpfungsarbeit AD, die mechanisch, während einer Drehschwingungsperiode, von der Kupplung produziert und in Wärmeenergie umgewandelt wird, zur elastischen Formänderungsarbeit AF in Bezug auf die mittlere Position.

= Dämpfungskonstante (Nms/rad) Wobei

= Drehsteifigkeit (Nm/rad)

= Frequenz (Rad/s)

= Dynamischer Verstärker

= Verschiebungswinkel Rad

= verhältnismäßige Dämpfung

Die dynamischen Verstärkerwerte der Gummimischung sind in untenstehender Tabelle aufgeführt:

Gummiqualität	M
NM 45	15
SM 50	10
SM 60	8
SM 70	6
SM 80	4

Sicherheit und Gesundheitsschutz am Arbeitsplatz

Kunden werden darauf hingewiesen, dass beim Kauf von Renold-Produkten, für die gewerbliche oder anderweitige Benutzung, zusätzliches bzw. aktualisiertes nicht in den Veröffentlichungen von Renold berücksichtigt werden konnte, von unseren örtlichen Vertriebsbüros angefordert werden muss. Dies bezieht sich

- (a) Hinweise zur individuellen Produkteignung, basierend auf den verschiedenen bestehenden Anwendungen der umfangreichen Produktpalette von Renold.
- Hinweise zur sicheren und ordnungsgemäßen Nutzung, vorausgesetzt, dass alle Details in Bezug auf die jeweilige, geplante oder bestehende, Anwendung offengelegt werden

Alle relevanten Informationen müssen vom Kunden an die Person weitergeleitet werden, die das Produkt handhabt, möglicherweise davon betroffen oder für seine Verwendung verantwortlich ist. Kein Teil dieser Informationsschrift stellt, weder ausdrücklich noch stillschweigend, einen Teil eines Vertrages dar.

Produktleistung

Die in diesem Katalog angegebenen Leistungsmerkmale und Toleranzen unserer Produkte (Wartbarkeit, Verschleiß/Lebensdauer, Zeitfestigkeit, Korrosionsschutz ohne Einschränkungen eingeschlossen) wurden anhand von ausführlichen Tests und Qualitätskontrollen gemäß den Empfehlungen von Renold, unabhängigen und/oder internationalen Standards bestätigt. Keine Verantwortung, Gewährleistung oder Bedingung wird übernommen, hinsichtlich der Einhaltung der angegebenen Leistungsmerkmale und Toleranzen von Anwendungen, die sich

nicht innerhalb kontrollierter Umgebungen, wie sie von solchen Tests verlangt werden, befinden. Der Kunde muss die Leistungsmerkmale und Toleranzen in Verbindung mit seiner eigenen Anwendung und Umgebung überprüfen.

Hinweise

Die in diesem Katalog enthaltenden Informationen wurden mit größtmöglicher Sorgfalt zusammengestellt. Es wird keine Verantwortung für Druckfehler übernommen. Änderungen an den Informationen in diesem Katalog können nach dem Veröffentlichungsdatum vorgenommen werden.

Abbildungen – Die in diesem Katalog verwendeten Abbildungen repräsentieren den beschriebenen Produkttypen. Die gelieferte Ware kann von der abgebildeten abweichen

Spezifikationen – Wir behalten uns das Recht vor, Änderungen von dem in diesem Katalog angegebenen Design und den Abmessungen vorzunehmen, um Fertigungsbedingungen und Entwicklungen bezüglich Design und Material zu entsprechen.

Renold – Produkte sind von Renold-Unternehmen bzw. Vertretungen weltweit erhältlich und unterliegen den allgemeinen Verkaufsbedingungen der jeweiligen Firma bzw. Vertretungen, von der die Produkte erworben werden.

Copyright – Der gesamte Inhalt dieser Veröffentlichung unterliegt dem Copyright von Renold Power Transmission Limited. Ohne schriftliche Genehmigung darf der Inhalt weder im Ganzen noch teilweise reproduziert werden.

Produktübersicht

DCB-GS Kupplungen

Die DCB-GS Kupplung eignet sich bestens für Schiffsantriebe, zur Energieerzeugung und für Anwendungen mit Kolbenverdichtern bei denen die Kontrolle der Resonanz-Torsionsschwingung sowie eine lange Lebensdauer unabdingbar sind.

Anwendungen

- Schiffsantriebe
- Hochleistungs-Generatoranlagen
- Kompressoren

UJ-Kupplungen

Die UJ-Kupplung wurde für die Verwendung mit Gelenkwellen konzipiert.

Anwendungen

- Baumaschinen
- Schienenfahrzeuge
- Pumpen

- Stahlwerke
- Papiermühlen
- Nebenabtriebe

HTB-Kupplungen

Die HTB-Kupplung eignet sich für hohe Temperaturen und Blindmontagen in Pumpenträgern.

Anwendungen

- Schiffsantriebe
- Generatoranlagen und Pumpenaggregate
- Kompressoren

VF-Kupplung

Die hochelastische VF-Kupplung wurde für Dieselmotoren mit frei aufgestellten Marine-Getrieben und die elastisch gelagert werden können, konzipiert.

Anwendungen

- Schiffsantriebe
- Kompressorensätze
- Generatoranlagen
- Nebenabtriebe

MSC-Kupplungen

Diese innovative Kupplung wurde konzipiert, um einem breiten Spektrum von Dieselantrieben und Verdichteranwendungen gerecht zu werden. Sie bietet eine geringe lineare Steifigkeit und die Kontrolle der Resonanz-Torsionsschwingung mit ausfallsicherem Betrieb. Max. Drehmoment 375 kNm.

Anwendungen

- Schiffsantriebe
- · Hochleistungs-Generatoranlagen
- Kompressoren

Produktübersicht - Getriebe und Kupplungen

Getriebe

Das Getriebesortiment von Renold ist vielseitig und deckt Schneckengetriebe, Stirnrad- und Kegelstirnradgetriebe sowie mechanische Getriebe mit variabler Übersetzung ab. Renold ist Experte im Bereich Antriebspakete und kundenspezifischer Sonderlösungen und arbeitet eng mit Kunden zusammen, um deren jeweilige Anwendungserfordernisse zu erfüllen, einschließlich: Nahverkehr, Fördertechnik, Energieerzeugung.

Tel: +44 (0) 1706 751000 Fax: +44 (0) 1706 751001 Email: gears.sales@renold.com.

Schneckenradsätze

Renold ist der Spezialist für die Fertigung hochqualitativer kundenspezifischer Schnecken und Schneckenräder, in sowohl Standard- als auch Präzisionsqualität, für eine Vielzahl von Anwendungen. Individuell gefertigte, kommerzielle Schneckenräder können nach Kundenzeichnung hergestellt oder rekonstruiert (Reverse Engineering) werden. Präzisions-Schneckengetriebe, einschließlich der Duplex-Verzahnungen, werden entsprechend strengster Industrietoleranzen gefertigt, um Höchstleistung und eine ruhige Übertragung zu garantieren.

Tel: +44 (0) 1706 751000 Fax: +44 (0) 1706 751001 Email: gears.sales@renold.com

Hi-Tec Couplings

Das Sortiment von Renold Hi-Tec Couplings besteht sowohl aus Kupplungen mit "auf Druck belastetem Gummi" als auch Kupplungen mit "auf Abscherung belastet Gummi" zur Dämpfung und Abstimmung der Torsionsschwingungen im Antriebsstrang. Die Kupplungen wurden vor über 50 Jahren entwickelt, um den Anforderungen der Industrie im Bereich Diesel- und Elektromotorantrieben zu entsprechen. Unsere Designfähigkeit und Innovation wird von unserem weltweiten Kundenstamm geschätzt und angewandt, um die Kupplungen den speziellen Wünschen der Kunden anzupassen. Renold Hi-Tec Couplings bietet die Dauerhaftigkeit, Zuverlässigkeit und hohe Standzeit, die Kunden fordern.

Tel: +44 (0) 1422 255000 Fax: +44 (0) 1422 255100 Email: sales@hitec.renold.com

Produktübersicht - Getriebe und Kupplungen

Kupplungen

Renold Couplings stellt Spezialkupplungen und Industriekupplungen her. Zu diesen gehören: Hydrastart Flüssigkeitskupplungen, Gearflex Zahnkupplungen, Renoldflex drehstarre Kupplungen und elastomere Kupplungen wie die Pinflex und Crownpin Bolzenkupplungen und die Discflex Kupplungsreihe. Beliebte Produkte sind die Spiderflex, Tyreflex und Chainflex Kupplungen. Dieses vielfältige Lieferprogramm liefert eine einzigartige Drehmomentenübertragung von 107 Nm bis 4747000 Nm. Renold Couplings bietet Kupplungslösungen für eine große Anzahl anspruchsvoller Anwendungen.

Tel: +44 (0) 2920 792737 Fax: +44 (0) 2920 793004 Email: sales@cc.renold.com

Ajax Mill Produkte

Die Renold Walzprodukte umfassen Zahnspindel, Gelenkantriebswellen und Zahnkupplungen. Die Zahnspindel von Renold werden den Kunden- und Anwendungserfordernissen entsprechend ausgelegt. Material, Wärmebehandlung und Zahngeometrie werden speziell für die jeweiligen Anforderungen individueller Anwendungen ausgewählt. Dreidimensionales Modellieren und Finite-Elemente-Analysen (FEA) werden eingesetzt, um die Produktgestaltung weiter zu verbessern und die bestmögliche Designlösung zu gewährleisten. Die Gelenkantriebswellen sind sowohl in metrischen als auch in zölligen Abmessungen erhältlich und bieten eine breite Palette an Optionen und Größen bis zu einem Durchmesser von 1.5 m.

Die Zahnkupplungen werden in Größen ab AGMA 1 bis AGMA 30 angeboten und bieten Drehmomente von 1435 Nm bi 5,762,224 Nm.

Tel: +1 716 326 3121 Fax: +1 716 326 8229 Email: ainfo@renold.com

Freilaufkupplungen

Das Renold-Angebot an Freilaufkupplungen beinhaltet sowohl die Klemmkörper- als auch die Klemmrollen-Ausführung. Freilaufkupplungen der Klemmkörper-Ausführung werden in verschiedenen sicherheitskritischen Anwendungen eingesetzt. Typische Beispiele hierzu sind Sicherheitsstopps an schrägstehenden Becherwerksystemen und Rücklaufsicherungen, zum Schutz der Fahrgäste der weltweit abenteuerlichsten Achterbahnen. Die Klemmrollen-Ausführung (Trapped Roller Kupplungen) ist mit heute auf dem Markt verfügbaren Freiläufen direkt austauschbar. Diese qualitativ hochwertigen Freilaufprodukte bieten Rücklaufsperr-, Überhol- und Indexier-Fähigkeiten für eine Vielzahl an Kundenanwendungen.

Tel: +44 (0) 2920 792737 Fax: +44 (0) 2920 793004 Email: sales@cc.renold.com

ÖSTERREICH

Wien

Tel: 00 43 1 3303484 0 Fax: 00 43 1 3303484 5 email: office@renold.at

AUSTRALIEN

Melbourne (Victoria) Tel. 00 61 (0) 3 9262 3333 Fax. 00 61 (0) 3 9561 8561 email: melsmg@renold.com.au

BELGIEN

Nivelles Tel. 00 32 67493740 Fax. 00 32 67442534 email: info@avd.be

KANADA

Ville LaSalle Tel: 00 1 (800) 265-9970 Fax: 00 1 (800) 661-6118 email: inquiry@renoldcanada.com

CHINA

Shanghai Tel. 00 86 21 5046 2696 Fax. 00 86 21 5046 2695 email: sales@renold.cn

DÄNEMARK

Brøndby Tel. 00 45 43 452611 Fax. 00 45 43 456592 email: info@renold.dk

FINNLAND

Vantaa Tel. 00 358 92532 3100 Fax. 00 358 92532 3177 email: konaflex@konaflex.fi

FRANKREICH

Seciin Tel. 00 33 (0) 320 16 29 29

Fax. 00 33 (0) 320 16 29 00 email: contact@brampton-renold.com

DEUTSCHLAND

Mechernich Tel. 00 49 2256 959074 Fax. 00 49 2256 959169 email: renold.deutschland@renold.com

GRIECHENLAND

Piraeus Tel. 00 30 1 4170266 Fax. 00 30 1 4170253 email: provatas@internet.gr

ITALIEN

Mailand Tel. 00 39 02 67861 Fax. 00 39 02 6698 1669 email: info@bianchicuscinetti.it

JAPAN

Tokio Tel. 00 81 6244 0172 Fax. 00 81 6244 0218 email: enquiry@haradacorp.co.jp

KOREA

Seoul Tel. 00 822 63403400 Fax. 00 822 6340 3409 email: samsawon@samsawon.co.kr

MALAYSIA

Selangor Tel. 00 603 5191 9880 Fax. 00 603 5191 9881/6881 email: malaysia@renold.com

NIEDERLANDE

Breda Tel. 00 31 7652 06114 Fax. 00 31 7652 07122 email: info@avdholland.com

NEUSEELAND

Auckland Tel. 00 64 (0) 828 5018 Fax. 00 64 (0) 828 5019 email: aksales@renold.co.nz

SINGAPUR

Singapur Tel. 00 65 6760 2422 Fax. 00 65 6760 1507 email: sales@renold.sg

SÜDAFRIKA

Benoni Tel. 00 27 (0) 11 845 1535 Fax. 00 27 (0) 11 421 9289 email: sales@renold.co.za

SPANIEN

Barcelona Tel. 00 34 (93) 638 0558 Fax. 00 34 (93) 638 0737 email: renold@renold-hitec.com

GROßBRITANNIEN

Renold Hi-Tec Couplings Tel +44 (0)1422 255000 Fax +44 (0)1422 255100 email: sales@hitec.renold.com

LISA

Westfield NY Tel. 00 1 716 326 3121 Fax. 00 1 716 326 8229 email: ainfo@renold.com

F-MAII

email: sales@hitec.renold.com

Renold Vertretungen stehen Ihnen auf allen Kontinenten zur Verfügung. Für Niederlassungen in anderen Ländern kontaktieren Sie bitte Renold in Großbritannien oder besuchen die Renold-Website.

Die in dieser Broschüre enthaltenden Informationen wurden mit größtmöglicher Sorgfalt zusammengestellt. Es wird keine Verantwortung für Druckfehler übernommen. Änderungen an den Informationen in dieser Broschüre können nach dem Veröffentlichungsdatum vorgenommen werden

E4-05-154 rev 100 RB/PM Cat. DE/0211 Ein Unternehmen der Renold Power Transmission Ltd.

