

RBI HI-TEC INDUSTRIAL COUPLINGS.

RENOLD HI-TEC RBI COUPLING

General purpose, cost effective range, which is manufactured in SG iron for torques up to 60kN.m.

The Standard Range Comprises

- Shaft to shaft
- Shaft to shaft with increased shaft engagement

Applications

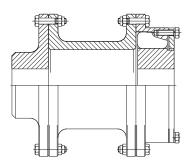
- Rubber processing and plastics industry
- Fluid transmission industry
- Material Handling
- Cranes & Hoists
- Metal manufacture
- Bulk handling
- Pulp and paper industry
- General purpose industrial applications.

Benefits

- Ensuring continuous operation of the driveline in the unlikely event of rubber damage
- Achieving low vibratory loads in the driveline components by selection of optimum stiffness characteristics
- With no lubrication or adjustment required resulting in low running costs
- Avoiding failure of the driveline under short circuit and other transient conditions
- Allows axial and radial misalignment between the driving and driven machines
- Eliminating torque amplifications through pre-compression of the rubber elements
- The RBI Coupling gives the lowest lifetime cost.

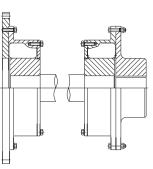
Features

- CO CO CO Sorres Intrinsically fail safe
- Control of resonant torsional vibration
- Maintenance free
- Severe shock load protection
- Misalignment capability
- Zero backlash
- Low cost.

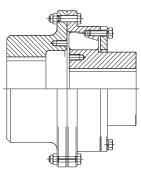

Construction Details

- Spheroidal graphite to BS EN 1563:2011 Grade 400-15
- Separate rubber elements with a standard SM80 shore hardness
- Rubber elements which are totally enclosed and loaded in compression.

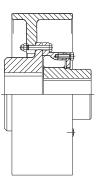
BESPOKE SERVICES


The Hi-Tec RBI Coupling can be adapted to meet customer requirements, as can be seen from some of the design variations shown below. For a more comprehensive list, contact Renold Couplings.

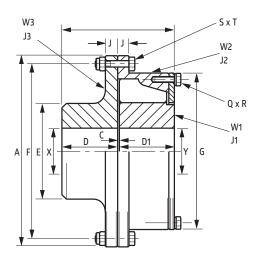
SPACER COUPLING


Spacer Coupling. Used to increase distance between shaft ends and allow easy access to driven and driving machines.

CARDAN SHAFT COUPLING


Cardan Shaft Coupling. Used to increase the distance between shaft ends and give a higher misalignment capability.

COUPLING WITH LONG BOSS **INNER MEMBER**


Coupling with long boss inner member and large boss driving flange to increase shaft engagement and to accept larger shafts.

BRAKE DRUM COUPLING

Coupling with brake drum for use on cranes, fans and conveyor drives, (brake disk couplings are available).

RENOLD RBI SHAFT TO SHAFT

Features

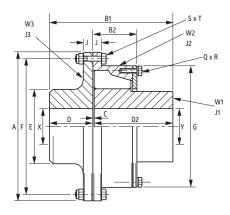
- Can accommodate a wide range of shaft diameters
- Easy disconnection of the outer member and driving flange
- Coupling available with limited end float.

Benefits

- Allows the optimum coupling to be selected
- Allows the driving and driven machines to be disconnected
- Provides axial location for armatures with axial float.

Coupling Size		RBI 1.4	RBI 2.1	RBI 2.6	RBI 4	RBI 8	RBI 12	RBI 23	RBI 40	RBI 60
INERTIA	J1	0.0044	0.0084	0.0131	0.0233	0.0563	0.1399	0.3227	0.8489	1.9633
(kgm²)	J2	0.0232	0.0375	0.0546	0.0887	0.20	0.3674	1.1035	1.9161	3.4391
	J3	0.0153	0.027	0.0396	0.0644	0.1475	0.2862	0.7998	1.512	2.9796

Dimensions, Weight and Alignment


Coupling Size		RBI 1.4	RBI 2.1	RBI 2.6	RBI 4	RBI 8	RBI 12	RBI 23	RBI 40	RBI 60
	A	200.0	222.2	238.1	260.3	308.0	358.8	466.7	508.0	571.5
	В	104.8	111.2	123.8	136.5	174.6	193.7	233.4	260.4	285.8
	С	3.2	3.2	3.2	3.2	3.2	3.2	4.8	6.4	6.4
	D	50.8	54.0	60.3	66.7	85.7	95.2	114.3	127.0	139.7
	D1	50.8	54.0	60.3	66.7	85.7	95.2	114.3	127.0	139.7
	E	79.4	95.2	101.6	120.6	152.4	184.1	222.2	279.4	330.2
	F	177.8	200.0	212.7	235.0	279.4	323.8	438.15	469.9	542.92
	G	156.5	178	186.5	210	251	295	362	435	501.5
DIMENSIONS (mm)	J	12.7	14.3	15.9	17.5	19.0	19.0	19.0	22.2	25.4
	Q	5	6	6	6	6	6	6	7	8
	R	M8	M8	M8	M10	M10	M12	M12	M12	M12
	S	6	10	6	8	8	18	16	22	22
	Т	M8	M8	M10	M10	M12	M12	M12	M16	M16
	MAX.X	50	60	65	80	95	115	140	170	210
	MAX.Y	55	70	75	85	95	115	140	170	210
	MIN. X&Y	30	35	40	40	55	55	70	80	90
Rubber	Per Cavity	1	1	1	1	1	1	1	1	1
Elements	Per Coupling	10	12	12	12	12	12	12	14	16
Maximum Speed (rpm)	(1)	5250	4725	4410	4035	3410	2925	2250	2070	1820
	W1	2.82	4.04	5.29	7.49	12.82	23.39	35.88	62.81	102.09
Weight (3) (kg)	W2	4.00	5.05	6.38	8.14	13.29	18.41	33.98	43.87	59.00
	W3	4.06	5.82	7.42	10.44	18.03	27.37	47.43	75.39	113.32
Allowable Misalignment	(2)									
Radial (mm)		0.75	0.75	0.75	0.75	1.0	1.5	1.5	1.5	1.5
Axial (mm)		1.5	1.5	1.5	1.5	1.5	1.5	2.0	3.0	3.0
Angular (degree)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.

(3) Weights and inertias are based on the minimum bore size.

⁽²⁾ Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables.

RBI SHAFT TO SHAFT WITH **INCREASED SHAFT ENGAGEMENT** (OPTIONAL)

Features

- Long Boss Inner Member.

Benefits

- Allows small diameter long length shafts to be used
- Reduces key stress
- Allows increased distances between shaft ends
- Full shaft engagement avoids the need for spacer collars.

Coupling Size		RBI 1.4	RBI 2.1	RBI 2.6	RBI 4	RBI 8	RBI 12	RBI 23	RBI 40	RBI 60
INERTIA	J1	0.0059	0.0121	0.0193	0.0326	0.0770	0.1896	0.4347	1.1833	2.8953
(kgm²)	J2	0.0232	0.0375	0.0546	0.0887	0.2000	0.3674	1.1035	1.9161	3.4391
	J3	0.0153	0.0270	0.0396	0.0644	0.1475	0.2862	0.7998	1.5120	2.9796

RBI 1.4 RBI 2.1 RBI 2.6 RBI 4 RE	I 8 RBI 12 RBI 23 RBI 40 RBI 60
n) 0.471 0.725 0.855 1.319 2.5	95 4.097 7.673 13.739 19.575
m) 1.39 2.14 2.58 3.95 8.0	12.15 22.95 41.10 61.50
m) 0.183 0.282 0.333 0.513 1.0	08 1.593 2.984 5.342 7.613
at	8 250 302 410 520
ss CTdym (MNm/rad)	
0.010 0.013 0.016 0.025 0.0	0.0076 0.143 0.220 0.499
0.014 0.018 0.021 0.034 0.0	068 0.102 0.193 0.297 0.673
0.029 0.037 0.045 0.070 0.1	41 0.214 0.405 0.621 1.326
0.062 0.080 0.096 0.148 0.3	01 0.456 0.861 1.320 2.533
0.107 0.137 0.166 0.254 0.1	17 0.782 1.477 2.268 4.153
(N/mm) 2136 2209 2504 2800 36	80 4050 5008 5600 6170
	300 15340 19045 24800 31400
1/mm 177 100 24F 2F0 21	
N/mm 177 198 245 258 31' N) 3250 4000 4400 4500 65	

Rubber Grade	Temp _{max} °C	S _t	Dynamic Magnifier (M ₃₀)	Relative Damping ¥ 30
SM80	100	St100 0.58	4	1.57

Should you require a custom Hi-Tec coupling to meet a specific requirement, our experienced team of engineers will work alongside you to create a bespoke offering to meet your needs.

Our team are supported by substantial facilities to enable ongoing testing and development, which includes the capability for;

- Measurement of torsional stiffness up to 220 kN.m
- Full scale axial and radial stiffness measurement
- Misalignment testing of couplings up to 2m diameter
- Static and dynamic balancing

- 3D stp and AutoCAD files
- Finite element analysis of both metal and rubber components
- Torsional vibration calculations
- Transient analysis

To discuss your project, contact us today on +44(0) 1422 255000

www.renold.com

sales@hitec.renold.com

Renold Couplings has been established since the 1940's and consists of three facilities, manufacturing the widest range of couplings worldwide, including the Hi-Tec product range.

Renold is recognised throughout the industry for its capability to create specific solutions to customer's unique requirements. International companies and industries, from steel to food processing to escalators to rubber and plastics machinery, have chosen Renold to solve their problems.

BRORBI/04.16/E

A Business of Renold Power Transmission Ltd.